Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T11:49:06.804Z Has data issue: false hasContentIssue false

PHYSIOLOGICAL ADAPTATION TO TEMPORAL VARIATION IN CONIFER FOLIAGE BY A CATERPILLAR

Published online by Cambridge University Press:  31 May 2012

Allan L. Carroll
Affiliation:
Atlantic Forestry Centre, Canadian Forest Service, PO Box 960, Corner Brook, Newfoundland, Canada A2H 653

Abstract

Larvae of the hemlock looper, Lambdina fiscellaria fiscellaria (Guenée) (Lepidoptere: Geometridae), consume both new and old foliage within the crowns of their host, balsam fir, Abies balsamea (L.) Miller (Pinaceae), despite the poor nutritional quality generally ascribed to old tissues. Laboratory studies evaluated whether the consumption of old foliage by hemlock looper larvae could be an adaptation to the relative paucity of new versus old foliage, and to the limited temporal window during which young foliage remains high in nutritional quality. Access to new foliage was critical to hemlock looper survival; 55% of larvae fed an exclusive diet of new foliage survived, whereas only 5% and 0% of larvae fed exclusively 1-or 2-year-old foliage survived, respectively. Moreover, larvae reared on branches in synchrony with bud flush were more than twice as likely to survive than those whose emergence was delayed by 2 weeks. Despite the reliance by the hemlock looper upon new foliage for survival, larvae given access to both new and old foliage survived better and were heavier than those restricted to new foliage. By incorporating older foliage into their diet, the hemlock looper can circumvent the limited availability of new foliage, thereby gaining access to more abundant tissues.

Résumé

Les larves de l’arpenteuse de la pruche, Lambdina fiscellaria fiscellaria (Guenée) (Lepidoptera : Tortricidae), consomment le vieux et le nouveau feuillage dans la couronne de leur plante hôte, le sapin baumier, Abies balsamea (L.) Miller (Pinaceae), et ce en dépit de la pauvre qualité nutritionnelle généralement attribuée aux vieux tissus. On a vérifié en laboratoire si la consommation du vieux feuillage par les larves de l’arpenteuse de la pruche était une adaptation à la rareté relative du nouveau feuillage par rapport à l’ancien, et à la fenêtre temporelle étroite pendant laquelle le jeune feuillage conserve une valeur nutritive supérieure. La disponibilité de nouveau feuillage s’est avérée critique à la survie de l’arpenteuse de la pruche : 55% des larves se nourrissant exclusivement de nouveau feuillage ont survécu, alors que seulement 5% et 0% des larves nourries exclusivement sur du feuillage âgé de 1 et 2 ans ont survécu, respectivement. De plus, les larves dont l’élevage a été fait en synchronie avec le débourrement des bourgeons ont survécu à un taux deux fois plus élevé que des larves dont l’émergence avait été retardée de 2 semaines. En dépit de ce besoin de nouveau feuillage pour la survie de l’arpenteuse de la pruche, les individus ayant accès à la fois à du nouveau et à de l’ancien feuillage ont survécu encore mieux et étaient plus lourds que les individus contraints à ne consommer que du nouveau feuillage. En incorporant l’ancien feuillage à son régime alimentaire, l’arpenteuse de la pruche peut contourner la disponibilité restreinte du nouveau feuillage et ainsi avoir accès à une source plus abondante de tissus végétaux.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aide, T.M., Londoño, E.C. 1989. The effects of rapid leaf expansion on the growth and survivorship of a lepidopteran herbivore. Oikos 55: 6670CrossRefGoogle Scholar
Albert, P.J., Bauce, E. 94. Feeding preferences of fourth- and sixth-instar spruce budworm (Lepidoptera: Tortricidae) larvae for foliage extracts from young and old balsam fir hosts. Environmental Entomology 23: 645–53CrossRefGoogle Scholar
All, J.N., Benjamin, D.M. 1975. Influence of needle maturity on larval feeding preference and survival of Neodiprion swainei and N. rugifrons on Jack pine, Pinus banksiana. Annals of the Entomological Society of America 68: 579–84CrossRefGoogle Scholar
Auerbach, M.J., Simberloff, D. 1984. Responses of leaf miners to atypical leaf production patterns. Ecological Entomology 9: 361–67CrossRefGoogle Scholar
Baltensweiler, W., Benz, G., Bovey, P., Delucchi, V. 1977. Dynamics of larch budmoth populations. Annual Review of Entomology 22: 79100CrossRefGoogle Scholar
Basset, Y. 1991. Leaf production of an overstorey rainforest tree and its effects on the temporal distribution of associated insect herbivores. Oecologia 88: 211–19CrossRefGoogle ScholarPubMed
Basset, Y. 1992. Influence of leaf traits on the spatial distribution of arboreal arthropods within an overstorey rainforest tree. Ecological Entomology 17: 816CrossRefGoogle Scholar
Bauce, E. 1986. Études des variations des teneurs en fibre brute du feuillage de sapin baumier (Abies balsamea (L.) Mill.) induite par différents facteurs de stress et leurs implications sur la tordeuse des bourgeons de l'épinette (Choristoneura fumiferana (Clem.). M.Sc. thesis, Department of Forestry, Université Laval, Sainte-Foy, Que.Google Scholar
Bauce, E., Crépin, M., Carisey, N. 1994. Spruce budworm growth, development and food utilization on young and old balsam fir trees. Oecologia 97: 499507CrossRefGoogle Scholar
Carisey, N., Bauce, E. 1997. Impact of balsam fir foliage age on sixth-instar spruce budworm growth, development, and food utilization. Canadian Journal of Forest Research 27: 257–64CrossRefGoogle Scholar
Carroll, A.L., Quiring, D.T. 1994. Intra-tree variation in foliage development influences the foraging strategy of a caterpillar. Ecology 75: 19781990CrossRefGoogle Scholar
Carroll, W.J. 1956. History of the hemlock looper, Lambdina fiscellaria fiscellaria (Guen.), (Lepidoptera: Geometridae) in Newfoundland, and notes on its biology. The Canadian Entomologist 88: 587–99CrossRefGoogle Scholar
Clancy, K.M., Wagner, M.R., Tinus, R.W. 1988. Variation in host foliage nutrient concentrations in relation to western spruce budworm herbivory. Canadian Journal of Forest Research 18: 530–39CrossRefGoogle Scholar
Clark, J. 1961. Photosynthesis and respiration in white spruce and balsam fir. State University College of Forestry, Syracuse, New York, Technical Publication 85Google Scholar
Day, K. 1984. Phenology, polymorphism and insect–plant relationships of the larch budmoth, Zeiraphera diniana (Guenée) (Lepidoptera: Tortricidae), on alternative conifer hosts in Britain. Bulletin of Entomological Research 74: 4764CrossRefGoogle Scholar
Denno, R.F., McClure, M.S. (Editors). 1983. Variable plants and herbivores in natural and managed systems. New York: Academic PressGoogle Scholar
Durzan, D.J. 1967. Nitrogen metabolism of Picea glauca. I. Seasonal changes of free amino acids in buds, shoot apices, and leaves, and the metabolism of uniformly labelled 14C-l-arginine by buds during the onset of dormancy. Canadian Journal of Botany 46: 909–19CrossRefGoogle Scholar
Dussourd, D.E. 1993. Foraging with finesse: caterpillar adaptations for circumventing plant defenses. pp 92131in Stamp, N.E., Casey, T.M. (Eds.), Caterpillars: ecological and evolutionary constraints on foraging. New York: Chapman & HallGoogle Scholar
Hough, J.A., Pimental, D. 1978. Influence of host foliage on development, survival, and fecundity of the gypsy moth. Environmental Entomology 7: 97102CrossRefGoogle Scholar
Hunter, A.F., Lechowicz, M.S. 1992. Foliage quality changes during canopy development of some northern hardwood trees. Oecologia 89: 316–23CrossRefGoogle ScholarPubMed
Ikeda, T., Matsumura, F., Benjamin, D.M. 1977. Chemical basis for feeding adaptation of pine sawflies Neodiprion rugifrons and Neodiprion swainei. Science (Washington, D.C.) 197: 497–98CrossRefGoogle ScholarPubMed
Kozlowski, T.T. 1964. Shoot growth in woody plants. Botanical Review 30: 335–92CrossRefGoogle Scholar
Kozlowski, T.T. 1971. Growth and development of trees. New York: Academic PressGoogle Scholar
Lawrence, R.K., Mattsonm, W.J., Haack, R.A. 1997. White spruce and the spruce budworm: defining the phenological window of susceptibility. The Canadian Entomologist 129: 291318CrossRefGoogle Scholar
Mason, R.R., Baxter, J.W. 1970. Food preference in a natural population of the Douglas-fir tussock moth. Journal of Economic Entomology 63: 1257–59CrossRefGoogle Scholar
Mattson, W.J.. Scriber, J.M. 1987. Nutritional ecology of insect folivores of woody plants: water, nitrogen, fiber, and mineral considerations. pp. 105–46 in Slansky, F. Jr, Rodriguez, J. (Eds.), Nutritional ecology of insects, mites, spiders, and related invertebrates. New York: John Wiley & SonsGoogle Scholar
Mattson, W.J., Levieux, J., Bernard-Dagan, C. (Editors). 1988. Mechanisms of woody plant defenses against insects: search for pattern. New York: Springer-VerlagCrossRefGoogle Scholar
McMorran, A. 1965. A synthetic diet for the spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae). The Canadian Entomologist 97: 5862CrossRefGoogle Scholar
Meades, W.J., Moores, L. 1989. Forest site classification manual: a field guide to the Damman forest types of Newfoundland. Canada – Newfoundland Forest Resource Development Agreement (FRDA) Report 003Google Scholar
Morris, R.F. 1963. Foliage depletion and the spruce budworm. pp. 223–28 in Morris, R.F. (Ed.), The dynamics of epidemic spruce budworm populations. Memoirs of the Entomological Society of Canada 31Google Scholar
Morris, R.F., Webb, F.E., Bennett, C.W. 1956. A method of phenological survey for use in forest insect studies. Canadian Journal of Zoology 34: 533–40CrossRefGoogle Scholar
Otvos, I.S. 1977. Mortality of overwintering eggs of the eastern hemlock looper in Newfoundland. Canadian Forest Service Bi-monthly Research Notes 33: 35Google Scholar
Otvos, I.S., Bryant, D.G. 1972. An extraction method for rapid sampling of eastern hemlock looper eggs, Lambdina fiscellaria fiscellaria (Lepidoptera: Geometridae). The Canadian Entomologist 104: 1511–14CrossRefGoogle Scholar
Otvos, I.S., Clarke, L.J., Durling, D.S. 1979. A history of recorded eastern hemlock looper outbreaks in Newfoundland. Canadian Forest Service Information Report N–X–179Google Scholar
Powell, G.R. 1977. Patterns of development in Abies balsamea crowns and effects of megastrobilus production on shoots and buds. Canadian Journal of Forest Research 7: 498509CrossRefGoogle Scholar
Quiring, D.T. 1992. Rapid change in suitability of white spruce for a specialist herbivore, Zeiraphera canadensis, as function of leaf age. Canadian Journal of Zoology 70: 2132–38CrossRefGoogle Scholar
Quiring, D.T. 1993. Influence of intra-tree variation in time of bud burst of white spruce on herbivory and the behaviour and survivorship of Zeiraphera canadensis. Ecological Entomology 18: 353–64CrossRefGoogle Scholar
Raupp, M.J., Denno, R.E. 1983. Leaf age as a predictor of herbivore distribution. pp. 91124in Denno, R.F., McClure, M.S. (Eds.), Variable plants and herbivores in natural and managed systems. New York: Academic PressCrossRefGoogle Scholar
Raupp, M.J., Werren, J.H., Sadof, C.S. 1988. Effects of short-term phenological changes in leaf suitability on the survivorship, growth, and development of gypsy moth (Lepidoptera: Lymantriidae) larvae. Environmental Entomology 17: 316–19CrossRefGoogle Scholar
Schultz, J.C. 1983. Habitat selection and foraging tactics of caterpillars in heterogeneous trees. pp. 6190in Denno, R.F., McClure, M.S. (Eds.), Variable plants and herbivores in natural and managed systems. New York: Academic PressCrossRefGoogle Scholar
Turgeon, J.J. 1985. Life cycle and behaviour of the spruce budmoth, Zeiraphera canadensis Mut. & Free. (Lepidoptera: Olethreutidae), in New Brunswick. The Canadian Entomologist 117: 1239–47CrossRefGoogle Scholar
Turgeon, J.J. 1986. The phenological relationship between the larval development of the spruce budmoth, Zeiraphera canadensis (Lepidoptera: Olethreutidae), and white spruce in northern New Brunswick. The Canadian Entomologist 118: 345–50CrossRefGoogle Scholar
Wagner, M.R. 1988. Induced defenses in ponderosa pine against defoliating insects. pp. 141–55 in Mattson, W.J., Levieux, J., Bernard-Dagan, C. (Eds.), Mechanisms of woody plant defenses against insects: search for pattern. New York: Springer-VerlagCrossRefGoogle Scholar
Watt, A.D. 1987. The effect of shoot growth stage of Pinus contorta and Pinus sylvestris on the growth and survival of Panolis flammea larvae. Oecologia 72: 429–33CrossRefGoogle ScholarPubMed
Watt, A.D. 1992. The influence of pine shoot phenology on the survival of pine beauty moth (Panolis flammea) larvae on different pine provenances. Forest Ecology and Management 47: 8794CrossRefGoogle Scholar
Weseloh, R.M. 1987. Dispersal and survival of gypsy moth larvae. Canadian Journal of Zoology 65: 1720–23CrossRefGoogle Scholar
Whitham, T.G. 1981. Individual trees as heterogeneous environments: adaptation to herbivory or epigenetic noise? pp. 927in Denno, R.F., Dingle, H. (Eds.), Insect life history patterns: habitat and geographic variation. New York: Springer-VerlagCrossRefGoogle Scholar
Whitham, T.G. 1983. Host manipulation of parasites: within-plant variation as a defense against rapidly evolving pests. pp. 1541in Denno, R.F., McClure, M.S. (Eds.), Variable plants and herbivores in natural and managed systems. New York: Academic PressCrossRefGoogle Scholar
Zimmerman, M.H., Brown, C.L. 1971. Trees: structure and function. New York: Springer-VerlagCrossRefGoogle Scholar