Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T05:04:13.748Z Has data issue: false hasContentIssue false

Phylogenetic comparative methods reveal higher wing loading in ant-attended Tuberculatus aphids (Hemiptera: Aphididae)

Published online by Cambridge University Press:  03 January 2012

Izumi Yao*
Affiliation:
Department of Ecology and Systematics, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
*
1Corresponding author (e-mail: [email protected]).

Abstract

Aphids of the genus Tuberculatus Mordvilko feed on Fagaceae trees and exhibit various interactions with ants, ranging from non-attendance to intermediate or close associations. Despite possession of fully developed wings, two ant-attended species, Tuberculatus quercicola (Matsumura) and Tuberculatus sp. A, exhibited extremely low dispersal. I examined the correlation between wing loading (ratio of body volume to wing area) and ant associations in 20 species of Tuberculatus. Based on a 1317 bp sequence in two mitochondrial regions, cytochrome oxidase I (COI) and NADH dehydrogenase subunit 1 (ND1), phylogenetic trees were reconstructed by neighbor-joining (NJ), most parsimony (MP), maximum likelihood (ML), and Bayesian analyses. All phylogenetic trees showed that mutualistic interactions with ants have evolved in Tuberculatus at least five times. Comparative analyses based on the NJ, MP, and ML trees showed that increase in wing loading is correlated with ant associations, suggesting that ant-attended aphids have allocated more resources to their bodies than to their wings, resulting in lowered dispersal.

Résumé

Les pucerons du genre Tuberculatus Mordvilko se nourrissent d'arbres de Fagaceae et connaissent diverses interactions avec les fourmis, variant d'aucune interaction à des associations moyennes ou fortes. Malgré la possession d'ailes complètement développées, deux espèces entretenues par les fourmis, Tuberculatus quercicola (Matsumura) et Tuberculatus sp. A, ont une dispersion très restreinte. La corrélation a été déterminée entre la charge alaire (rapport du volume corporel sur la surface des ailes) et l'association avec les fourmis chez 20 espèces de Tuberculatus. Les arbres phylogénétiques basés sur une séquence de 1317 pb dans deux régions mitochondriales, la cytochrome oxydase I (COI) et la sous-unité 1 de la NADH déshydrogénase (ND1), ont été élaborés par les méthodes du plus proche voisin (NJ), de la parcimonie maximale (MP) et de la vraisemblance maximale (ML), ainsi que par analyse bayésienne. Tous les arbres phylogénétiques montrent que les interactions mutualistes avec les fourmis sont apparues au moins à cinq reprises chez Tuberculatus. Des analyses comparatives basées sur les arbres NJ, MP et ML indiquentop que l'accroissement de la charge alaire est corrélé aux associations avec les fourmis, ce qui laisse croire que les pucerons entretenus par les fourmis allouent plus de ressources à leur corps qu'à leurs ailes, ce qui entraîne une dispersion réduite.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bristow, C.M. 1991. Why are so few aphids antattended? In Ant-plant interactions. Edited by Huxley, C.R. and Cutler, D.F.. Oxford University Press, New York. pp. 104119.CrossRefGoogle Scholar
Dixon, A.F.G., Horth, S., and Kindlmann, P. 1993. Migration in insects: cost and strategies. Journal of Animal Ecology, 62: 182190. doi:10.2307/5492.CrossRefGoogle Scholar
Ellington, C.P. 1984. The aerodynamics of hovering insect flight. II. Morphological parameters. Philosophical Transactions of the Royal Society of London B Biological Sciences, 305: 1740. doi:10.1098/rstb.1984.0050.Google Scholar
Felsenstein, J. 1985. Phylogenies and the comparative method. The American Naturalist, 125: 115. doi:10.1086/284325.CrossRefGoogle Scholar
Harvey, P.H., and Pagel, M.D. 1991. The comparative method in evolutionary biology. Oxford University Press, New York.CrossRefGoogle Scholar
Katayama, N., and Suzuki, N. 2002. Cost and benefit of ant attendance for Aphis craccivora (Hemiptera: Aphididae) with reference to aphid colony size. The Canadian Entomologist, 134: 241249. doi:10.4039/Ent134241-2.CrossRefGoogle Scholar
Mondor, E.B., Roitberg, B.D., and Stadler, B. 2002. Cornicle length in Macrosiphini aphids: a comparison of ecological traits. Ecological Entomology, 27: 758762. doi:10.1046/j.1365-2311.2002.00470.x.CrossRefGoogle Scholar
Nylander, J.A.A. 2004. MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.Google Scholar
Posada, D., and Crandall, K.A. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics, 14: 817818. PMID:991895 doi:10.1093/bioinformatics/14.9.817.CrossRefGoogle ScholarPubMed
Purvis, A., and Rambaut, A. 1995. Comparative analysis by independent contrasts (CAIC): an Apple Macintosh application for analysing comparative data. Computer Applications in the Biosciences, 11: 247251. PMID:7583692.Google ScholarPubMed
Quednau, F.W. 1999. Atlas of the drepanosiphine aphids of the world. Part I: Panaphidini Oestlund, 1922-Myzocallidina Börner, 1942 (1930) (Hemiptera: Aphididae: Calaphidinae). Contributions of the American Entomological Institute, 31(1).Google Scholar
Roff, D.A., and Fairbairn, D.J. 1991. Wing dimorphisms and the evolution of migratory polymorphisms among the Insecta. American Zoologist, 31: 243251. doi:10.1093/icb/31.1.243.CrossRefGoogle Scholar
Ronquist, F., and Huelsenbeck, J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19: 15721574. PMID: 12912839 doi:10.1093/bioinformatics/btg180.CrossRefGoogle ScholarPubMed
Shingleton, A.W., and Stern, D.L. 2003. Molecular phylogenetic evidence for multiple gains or losses of ant mutualism within the aphid genus Chaitophorus. Molecular Phylogenetics and Evolution, 26: 2635. PMID:12470935 doi:10.1016/S1055-7903(02)00328-7.CrossRefGoogle ScholarPubMed
Shingleton, A.W., Stern, D.L., and Foster, W.A. 2005. The origin of a mutualism: a morphological trait promoting the evolution of ant-aphid mutualisms. Evolution, 59: 921926. PMID:15926702 doi:10.1554/04-584.Google ScholarPubMed
Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., and Flook, P. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America, 87: 651701.CrossRefGoogle Scholar
Stadler, B., and Dixon, A.F.G. 1998. Costs of ant attendance for aphids. Journal of Animal Ecology, 67: 454459. doi:10.1046/j.1365-2656. 1998.00209.x.CrossRefGoogle Scholar
Stadler, B., Dixon, A.F.G., and Kindlmann, P. 2002. Relative fitness of aphids: effects of plant quality and ants. Ecology Letters, 5: 216222. doi:10.1046/j.1461-0248.2002.00300.x.CrossRefGoogle Scholar
Swofford, D.L. 2002. PAUP*. Phylogenetic analysis using parsimony (and other methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
Yao, I. 2010. Contrasting patterns of genetic structure and dispersal ability in ant-attended and non-attended Tuberculatus aphids. Biology Letters, 6: 282286. PMID:19923136 doi:10.1098/rsb1.2009.0781.CrossRefGoogle ScholarPubMed
Yao, I., and Akimoto, S. 2001. Ant attendance changes the sugar composition of the honey-dew of the drepanosiphid aphid Tuberculatus quercicola. Oecologia, 128: 3643. doi:10.1007/s004420100633.CrossRefGoogle Scholar
Yao, I., and Akimoto, S. 2002. Flexibility in the composition and concentration of amino acids in honeydew of the drepanosiphid aphid Tuberculatus quercicola. Ecological Entomology, 27: 745752. doi:10.1046/j.1365-2311.2002.00455.x.CrossRefGoogle Scholar
Yao, I., Shibao, H., and Akimoto, S. 2000. Costs and benefits of ant attendance to the drepanosiphid aphid Tuberculatus quercicola. Oikos, 89: 310. doi:10.1034/j.1600-0706.2000.890101.x.CrossRefGoogle Scholar
Zera, A.J., and Denno, R.F. 1997. Physiology and ecology of dispersal polymorphism in insects. Annual Review of Entomology, 42: 207230. PMID:15012313 doi:10.1146/annurev.ento.42.1.207.CrossRefGoogle ScholarPubMed