Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T14:46:28.909Z Has data issue: false hasContentIssue false

PATHOGENICITY OF NOSEMA FUMIFERANAE (THOMSON) (MICROSPORIDA) IN SPRUCE BUDWORM, CHORISTONEURA FUMIFERANA (CLEMENS), AND IMPLICATIONS OF DIAPAUSE CONDITIONS1

Published online by Cambridge University Press:  31 May 2012

Leah S. Bauer
Affiliation:
North Central Forest Experiment Station, USDA Forest Service, 1407 South Harrison Road, East Lansing, Michigan, USA48823
Gerald L. Nordin
Affiliation:
Department of Entomology, University of Kentucky, Lexington, Kentucky, USA40546
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A standardized bioassay procedure was used to determine median lethal doses (LD50) of the microsporidium, Nosema fumiferanae (Thom.), on newly molted fourth- and fifth-instar eastern spruce budworm larvae (Choristoneura fumiferana (Clem.)). The LD50 for fifth-instar larva was 1.23 × 106 ± 2.82 × 105 spores. The fourth-instar LD50 was 2.23 × 104 ± 4.30 × 103 spores per larva for populations experiencing prolonged post-diapause cold storage or an elevated temperature during diapause and 2.00 × 105 ± 6.66 × 104 spores per larva for populations not experiencing stressful conditions during and after diapause. Median lethal times (LT50) ranged from 6 to 19 days, depending on instar and dose level. Sublethal responses of fourth- and fifth-instar larvae inoculated with serial dilutions of spores were estimated by significant linear models. These regressions were negative for pupal weight and adult longevity and positive for development time (duration of instar VI). Inoculations of newly molted sixth-instar larvae produced similar models, although development time was not significantly affected. Insects reared following stress during and after diapause had consistently longer developmental times. The importance of prolonged developmental time on disease expression and insect susceptibility is discussed.

Résumé

On a utilisé une méthode standard pour déterminer les doses létales médianes (LD50) de la microsporidie Nosema fumiferanae (Thom.) pour des larves nouvellement muées des stades quatre et cinq de la tordeuse des bourgeons de l’épinette, Choristoneura fumiferana (Clem.). La dose létale médiane (LD50) pour les larves de cinquième stade était 1,23 × 106 ± 2,82 × 105 spores. La LD50 pour les larves de quatrième stade était 2,23 × 104 ± 4,30 × 103 spores par larve chez des populations ayant subi un refroidissement post-diapause prolongé ou une élévation de température durant la diapause, et 2,00 × 105 ± 6,66 × 104 spores par larve n’ayant pas subi de conditions stressantes durant, ou après la diapause. Les délais de mortalité (LT50) ont varié de 6 à 19 jours selon le stade et la dose. On a caractérisé les réactions sub-létales des larves des stades quatre et cinq inoculées avec des dilutions en série des spores par des modèles de régression linéaire significatifs. Ces régressions étaient négatives dans le cas du poids des pupes ou de la longévité adulte, et positives pour la durée de développement (au stade VI). L’inoculation de larves de stade six nouvellement muées a révélé des modèles similaires, bien que la durée du développement n’ait pas été affectée. Les insectes ayant subi un stress durant ou après la diapause montraient invariablement un prolongement du développement. On discute de l’importance du prolongement du développement pour l’expression de la maladie et la susceptibilité de l’insecte.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1988

References

Bauer, L.S. 1987. Pathogenicity of the microsporidian, Nosema fumiferanae (Thom.), in eastern spruce budworm, Choristoneura fumiferana (Clem.): role of host condition, effect on reproduction and nutritional physiology, and interaction with dietary nitrogen and Bacillus thuringiensis Berliner. Ph.D. thesis, University of Kentucky, Lexington, Kentucky. 130 pp.Google Scholar
Bean, J.L., Mott, D.G.. 1972. Spruce budworm in eastern United States. U.S. For. Serv. For. Pest Leaflet 58.Google Scholar
Burges, H.D., Thomson, E.M.. 1971. Standardization and assay of microbial insecticides. pp. 591–622 in Burges, H.D., and Hussey, N.W. (Eds.), Microbial Control of Insects and Mites. Academic Press, New York. 861 pp.Google Scholar
Cole, R.J. 1970. The application of the “triangulation” method to the purification of Nosema spores from insect tissues. J. Invertebr. Pathol. 15: 193195.CrossRefGoogle Scholar
Finney, D.J. 1971. Probit Analysis. Cambridge University Press. 333 pp.Google Scholar
Hamm, J.J., Burton, R.L., Young, J.R., Daniel, R.T.. 1971. Elimination of Nosema heliothidis from a laboratory colony of the corn earworm. Ann. ent. Soc. Am. 64: 624627.CrossRefGoogle Scholar
Harvey, G.T. 1985. Egg weight as a factor in the overwintering survival of spruce budworm (Lepidoptera: Tortricidae) larvae. Can. Ent. 117: 14511461.CrossRefGoogle Scholar
Henry, J.E. 1981. Natural and applied control of insects by protozoa. Annu. Rev. Ent. 26: 4973.CrossRefGoogle Scholar
McMorran, A. 1965. A synthetic diet for the spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae). Can. Ent. 97: 5862.CrossRefGoogle Scholar
Neilson, M.M. 1963. Disease and the spruce budworm. pp. 272–287 in Morris, R.F. (Ed.), The Dynamics of Epidemic Spruce Budworm Populations. Mem. ent. Soc. Can. 31. 332 pp.Google Scholar
Nordin, G.L. 1976. Microsporidian bioassay technique for third-instar Pseudaletia unipuncta larvae. J. Invertebr. Pathol. 27: 397398.CrossRefGoogle Scholar
Renault, T.R. 1972. Post-diapause activity and survival of spruce budworm larvae in relation to the sequence of spring emergence. Can. For. Serv. Inf. Rep. M-X-32. Fredericton.Google Scholar
Royama, T. 1984. Population dynamics of the spruce budworm Choristoneura fumiferana. Ecol. Monographs 54: 429462.CrossRefGoogle Scholar
SAS Institute. 1982. SAS User's Guide: Statistics. SAS Institute, Cary, NC. 584 pp.Google Scholar
Thomson, H.M. 1955. Perezia fumiferanae n. sp., a new species of microsporidia from the spruce budworm Choristoneura fumiferana (Clem.). J. Parasitol. 41: 416423.CrossRefGoogle Scholar
Thomson, H.M. 1958 a. Some aspects of the epidemiology of a microsporidian parasite of the spruce budworm, Choristoneura fumiferana (Clem.). Can. J. Zool. 36: 309316.CrossRefGoogle Scholar
Thomson, H.M. 1958 b. The effect of a microsporidian parasite on the development, reproduction, and mortality of the spruce budworm, Choristoneura fumiferana (Clem.). Can. J. Zool. 36: 499511.CrossRefGoogle Scholar
Weiser, J. 1969. Immunity of insects to Protozoa. pp. 129–147 in Jackson, E.J., Herman, R., and Singer, I., (Eds.), Immunity to Parasitic Animals. Vol. 1. Appleton-Century-Crofts, New York. 292 pp.Google Scholar
Weiser, J. 1976. Microsporidia in invertebrates: host–parasite relations at the organismal level. pp. 163–201 in Bulla, L.A. Jr. (Ed.), Comparative Pathobiology. Vol. I. Plenum Press, New York.Google Scholar
Wilson, G.G. 1974. Effects of larval age at inoculation, and dosage of microsporidian (Nosema fumiferanae) spores, on mortality of spruce budworm Choristoneura fumiferana. Can. J. Zool. 52: 993996.CrossRefGoogle Scholar
Wilson, G.G. 1976. A method for mass producing spores of the microsporidian Nosema fumiferanae in its host, the spruce budworm Choristoneura fumiferana (Lepidoptera: Tortricidae). Can. Ent. 108: 383386.CrossRefGoogle Scholar
Wilson, G.G. 1977. Observations on the incidence rates of Nosema fumiferanae (Microsporida) in a spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae) population. Proc. ent. Soc. Ont. 108: 144145.Google Scholar
Wilson, G.G. 1979. Reduced spore production of Nosema fumiferanae (Microsporida) in spruce budworm Choristoneura fumiferana reared at elevated temperature. Can. J. Zool. 57: 11671168.CrossRefGoogle Scholar
Wilson, G.G. 1980. Effects of Nosema fumiferanae (Microsporida) on rearing stock of spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). Proc. ent. Soc. Ont. 111: 115116.Google Scholar
Wilson, G.G. 1981. Nosema fumiferanae, a natural pathogen of a forest pest: potential for pest management. pp. 595–601 in Burges, H.D. (Ed.), Microbial Control of Pests and Plant Diseases 1970–1980. Academic Press, New York. 941 pp.Google Scholar
Wilson, G.G. 1982. Transmission of Nosema fumiferanae (Microsporida) to its host Choristoneura fumiferana (Clem.). Z. Parasitenkd 68: 4751.CrossRefGoogle Scholar
Wilson, G.G. 1983. A dosing technique and the effects of sub-lethal doses of Nosema fumiferanae (Microsporida) on its host the spruce budworm, Choristoneura fumiferana. Parasitology 87: 371376.CrossRefGoogle Scholar
Wilson, G.G. 1985. Dosage-mortality response of Choristoneura fumiferana (Clem.) to the microsporidian, Nosema fumiferanae. Can. For. Serv. Inf. Rep. FPM-X-68. Sault Ste.Marie.Google Scholar