Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T05:11:52.616Z Has data issue: false hasContentIssue false

Parasitism of adult Poecilus versicolor (Coleoptera: Carabidae) by hymenopteran larvae

Published online by Cambridge University Press:  03 January 2012

Kôji Sasakawa*
Affiliation:
Laboratory of Plant Evolution and Biodiversity, Department of General Systems Studies, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
Hiroshi Ikeda
Affiliation:
Department of Forest Entomology, Forestry and Forest Products Research Institute, 1 Matsunosato Tsukuba, Ibaraki 305-8687, Japan
Mitsuaki Sutou
Affiliation:
Laboratory of Plant Evolution and Biodiversity, Department of General Systems Studies, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
Shigeto Dobata
Affiliation:
Laboratory of Subtropical Zoology, Department of Agro-Environmental Sciences, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
Motomi Itô
Affiliation:
Laboratory of Plant Evolution and Biodiversity, Department of General Systems Studies, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
*
1Corresponding author (e-mail: [email protected]).

Abstract

We report the presence and effects of parasitoid larvae (Hymenoptera) in the carabid beetle Poecilus versicolor (Sturm). Dissection of one female and one male live host found 33 and 25 hymenopteran larvae, respectively. Although eggs were absent in the female host, likely because of consumption by parasitoids, distinct corpora lutea (present in parous females) were observed. In the male host, reproductive organs were undamaged. These observations suggest incomplete “parasitic castration” of the host beetle by the parasitoids. Parasitism rates in specimens from three localities were markedly low (0%–3.2%). At one locality, only one male and three female beetles containing parasitoids were found; those individuals each contained 9–27 larvae (mean 19.3). These results suggest that hymenopterous parasitoids in adult P. versicolor have little effect on the population dynamics of this beetle. The parasitoid larvae included two morphological types belonging to at least two taxa. Mitochondrial DNA analyses suggested that one of the types represented two species of Microctonus Wesmael (Braconidae: Euphorinae). The result of the genus-level identification, however, requires confirmation because the analyzed data set did not cover all braconid genera.

Résumé

Nous signalons la présence et les effets de larves parasitoïdes chez le carabe Poecilus versicolor (Sturm). La dissection d'un hôte vivant mâle et d'une femelle a révélé la présence respectivement de 33 et de 25 larves d'hyménoptères. Bien que les œufs aient été absents de l'hôte femelle, sans doute parce que consommés par les parasitoïdes, il y avait des corps jaunes distincts (caractéristique des femelles gravides). Chez l'hôte mâle, les organes reproducteurs étaient intacts. Ces observations laissent croire à une « castration incomplète » du coléoptère hôte par les parasitoïdes. Les taux de parasitisme chez des spécimens de trois localités étaient particulièrement bas (0 %–3,2 %). Dans une localité, seul un mâle et trois femelles portaient des parasitoïdes et ils contenaient chacun 9–27 larves (moyenne de 19,3). Ces résultats indiquent que les hyménoptères parasitoïdes chez les P. versicolor adultes ont peu d'effet sur la dynamique de population de ce coléoptère. Les larves parasitoïdes comprenaient deux types morphologiques appartenant à au moins deux taxons. Des analyses de l'ADN mitochondrial semblent indiquer que l'un des deux types représente deux espèces de Microctonus Wesmael (Braconidae: Euphorinae). Cette identification générique requiert cependant une confirmation parce que la base de donnée qui a servi à l'identification ne couvre pas tous les genres de braconidés.

[Traduit par la Rédaction]

Type
Systematics & Morphology
Copyright
Copyright © Entomological Society of Canada 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arndt, E.Costa, C. 2001. Parasitism of neotropical tiger beetles (Coleoptera: Carabidae: Cicindelinae) by Anthrax (Diptera: Bombyliidae). Studies on Neotropical Fauna and Environment, 36: 6366. doi:10.1076/snfe.36.1.63.8885.Google Scholar
Critchley, B.R. 1973. Parasitism of the larvae of some Carabidae (Coleoptera). Journal of Entomology, 48: 3742. doi:10.1111/j.1365-3032.1973.tb00031.x.Google Scholar
Derr, J.N.Davis, S.K.Woolley, J.B.Wharton, R.A. 1992. Reassessment of the 16S rRNA nucleotide sequence from members of the parasitic Hymenoptera. Molecular Phylogenetics and Evolution, 1: 338341. doi:10.1016/1055-7903(92)90008-5.Google Scholar
Dowton, M.Austin, A.D. 1994. Molecular phylogeny of the insect order Hymenoptera: apocritan relationships. Proceedings of the National Academy of Sciences of the United States of America, 19: 99119915. doi:10.1073/pnas.91.21.9911.CrossRefGoogle Scholar
Drummond, A.J.Rambaut, A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7: 214. doi:10.1186/1471-2148-7-214.Google Scholar
Excoffier, L.Laval, G.Schneider, S. 2005. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1: 4750.Google Scholar
Folmer, O.Black, M.Hoeh, W.Lutz, R.Vrijenhoek, R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3: 294299.Google Scholar
Futuyma, D.J. 2005. Evolution. Sinauer Associates, Inc., Sunderland, Massachusetts.Google Scholar
Gullan, P.J.Cranston, P.S. 2004. The insects. An outline of entomology. Blackwell Science, Oxford, United Kingdom.Google Scholar
Habu, A.Sadanaga, K. 1961. Illustrations for identification of larvae of the Carabidae found in cultivated fields and paddy-fields (I). Bulletin of the National Institute of Agricultural Sciences, Series C, 13: 207248. [In Japanese with English summary]Google Scholar
Hall, T.A. 2005. BioEdit version 7.0.5 [online]. Available from: www.mbio.ncsu.edu/bioedit/bioedit.html [accessed 1 October 2010].Google Scholar
Hebert, P.D.Cywinska, A.Ball, S.L.deWaard, J.R. 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B, 270: 313321. doi:10.1098/rspb.2002.2218.Google Scholar
Holland, J.M. 2002 The agroecology of carabid beetles. Intercept Ltd., Andover, United Kingdom.Google Scholar
Jobb, G. 2008. Treefinder [online]. Available from: http://www.treefinder.de [accessed 8 March 2009].Google Scholar
Larkin, M.A.Blackshields, G.Brown, N.P.Chenna, R.McGettigan, P.A.McWilliam, H. et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics, 23: 29472948. doi:10.1093/bioinformatics/btm404.Google Scholar
Larochelle, A.Larivière, M.C. 2003. A natural history of the ground-beetles (Coleoptera: Carabidae) of America north of Mexico. Pensoft Publishers, Sofia, Moscow.Google Scholar
Loan, C.C.Holliday, N.J. 1979. Euphorinae parasitic on ground beetles with descriptions of three new species of Microctonus Wesmael (Hymenoptera: Braconidae, and Coleoptera: Carabidae). Le Naturaliste Canadien, 106: 393397.Google Scholar
Luff, M.L. 1976a. Notes on the biology and developmental stages of Nebria brevicollis and their parasites, Phaenoserphus spp. (Hym., Proctotrupoidea). The Entomologist's Monthly Magazine, 111: 249255.Google Scholar
Luff, M.L. 1976b. The biology of Microctonus caudatus (Thomson), a braconid parasite of the ground beetle Harpalus rufipes (Degeer). Ecological Entomology, 1: 111116. doi:10.1111/j.1365-2311.1976.tb01211.x.Google Scholar
Luff, M.L. 1976c. Centistes nasutus (Wesmael) (Hym., Braconidae) parasitizing Amara apricaria Payk. (Col., Carabidae). The Entomologist's Monthly Magazine, 112: 40Google Scholar
Muesebeck, C.F.W. 1936. The genera of parasitic wasps of the braconid subfamily Euphorinae with a review of the Nearctic species. United States Department of Agriculture, Miscellaneous Publication, 241: 136.Google Scholar
Ratnasingham, S.Hebert, P.D.N. 2007. BOLD: The barcode of life data system (http://www.barcodinglife.org). Molecular Ecology Notes, 7: 355364. doi:10.1111/j.1471-8286.2006.01678.x.Google Scholar
Rivard, I. 1964. Notes on parasitism of ground beetles (Coleoptera: Carabidae) in Ontario. Canadian Journal of Zoology, 42: 919920. doi:10.1139/z64-089.Google Scholar
Sasakawa, K. 2006. Morphological association between the spermatophore and male genitalia in carabid beetles of the tribe Pterostichini (Coleoptera: Carabidae). Zoological Science, 23: 587591. doi:10.2108/zsj.23.587.CrossRefGoogle ScholarPubMed
Sasakawa, K. 2007. Sperm bundle and reproductive organs of carabid beetles tribe Pterostichini (Coleoptera: Carabidae). Naturwissenschaften, 94: 384391. doi:10.1007/s00114-006-0200-4.CrossRefGoogle ScholarPubMed
Sharkey, M.J. 2007. Phylogeny and classification of Hymenoptera. In Linnaeus tercentenary: progress in invertebrate taxonomy. Zootaxa 1668. Edited by Zhang, Z.-Q.Shear, W.A.. Magnolia Press, Auckland, New Zealand. 521548.Google Scholar
Simmons, M.P.Ochoterena, H. 2000. Gaps as characters in sequence-based phylogenetic analyses. Systematic Biology, 49: 369381. doi:10.1093/sysbio/49.2.369Google Scholar
Swofford, D.L. 2002. PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4.0b. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
Takami, Y. 2004. Parasitism of Carabus kimurai (Ishikawa) (Coleoptera: Carabidae) by the endoparasitic fly Zaira cinerea Fallen (Diptera: Tachinidae) and its effect on male reproductive capability. The Coleopterists Bulletin, 58: 271272. doi:10.1649/696.Google Scholar
Tanabe, A.S. 2007. Kakusan: a computer program to automate the selection of a nucleotide substitution model and the configuration of a mixed model on multilocus data. Molecular Ecology Notes, 7: 962964. doi:10.1111/j.1471-8286.2007.01807.x.CrossRefGoogle Scholar
Thiele, H.U. 1977. Carabid beetles in their environments. Springer, Berlin.Google Scholar
Watanabe, C. 1954. Description of a new species of Microctonus Wesmael bred from the carabid beetle Harpalus capito Morawitz (Hymenoptera: Braconidae). Insecta Matsumurana, 18: 109110.Google Scholar