Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-20T08:41:46.077Z Has data issue: false hasContentIssue false

Overwintering survival of bagworms, Thyridopteryx ephemeraeformis (Lepidoptera: Psychidae): influence of temperature and egg cluster weight

Published online by Cambridge University Press:  23 January 2013

Marc Rhainds*
Affiliation:
Natural Resources Canada, Canadian Forest Service - Atlantic Forestry Centre, PO Box 4000, Fredericton, New Brunswick, E3B 5P7 Canada
Jacques Régnière
Affiliation:
Natural Resources Canada, Canadian Forest Service - Laurentian Forestry Centre, 1055 du P.E.P.S. Street, PO Box 10380, Quebec, Quebec, G1V 4C7 Canada
Heather J. Lynch
Affiliation:
Department of Ecology & Evolution, Stony Brook University, Stony Brook, New York 11794, United States of America
William F. Fagan
Affiliation:
Department of Biology, University of Maryland, College Park, Maryland 20742, United States of America
*
1Corresponding author (e-mail: [email protected]).

Abstract

The present study relates the survival rate of bagworm eggs to extreme winter temperature and weight of egg clutches. The eggs were collected in the spring of 2009 at 104 locations in the mid-western United States of America across a latitudinal range from 36.5–41.5 °N. Egg survival after a 1-week incubation period was overdispersed, suggesting that survival of individual eggs within a clutch is highly correlated. Logistic regression analysis revealed that the survival of eggs, assessed after 1 or 12 weeks of incubation, significantly increases with the weight of egg clutches and increasing minimum winter temperature (expressed as the maximum temperature during the coldest day of winter). Lethal temperature for 50% of egg clusters was −14 °C for clusters weighing 0.1 g and −18.1 °C for 0.4 g clusters. The regression model developed here provides a tool to forecast the persistence of bagworm populations in recently colonised locations in Michigan, United States of America and southern Ontario, Canada.

Résumé

La présente étude relie le taux de survie des œufs de la chenille burcicole aux températures extrêmes et au poids des masses d’œufs. Les œufs ont été récoltés au printemps 2009 dans 104 localités du centre-ouest des États-Unis d'Amérique, le long d'un gradient latitudinal allant de 35.5–41.5 °N. La survie des œufs après une semaine d'incubation était sur-dispersée, ce qui suggère que la survie des œufs individuels au sein d'une même masse est fortement corrélée. L'analyse par régression logistique a révélé que la survie des oeufs, évaluée après 1 ou 12 semaines d'incubation, augmente significativement avec le poids de la masse d’œufs dans laquelle ils se trouvent, et avec la température maximum du jour le plus froid auquel ils ont été exposés pendant l'hiver. La température létale pour 50% des masses d’œufs est de −14 °C pour les masses pesant 0.1 g, alors qu'elle est de −18.1 °C pour les masses de 0.4 g. Le modèle de régression développé ici constitue un outil pour prédire la persistance des populations de chenille burcicole dans les endroits récemment colonisés du Michigan, États-Unis d'Amérique et du sud de l'Ontario, Canada.

Type
Behaviour & Ecology
Copyright
Copyright © Her Majesty the Queen in Right of Canada 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balduf, W.V. 1937. Bionomic notes on the common bagworm, Thyridopteryx ephemeraeformis Haw., (Lepid., Psychidae) and its insect enemies (Hym., Lepid.). Proceedings of the Entomological Society of Washington, 39: 169184.Google Scholar
Bale, J.S., Masters, G.J., Hodkinson, I.D., Awmack, C., Bezemer, T.M., Brown, T.M., et al. 2002. Herbivory in global climate change research: direct effects of rising temperatures on insect herbivores. Global Change Biology, 8: 116.CrossRefGoogle Scholar
Barbosa, P., Krischnik, V., Lance, D. 1989. Life-history traits of forest-inhabiting flightless Lepidoptera. American Midland Naturalist, 122: 262274.CrossRefGoogle Scholar
Barbosa, P., Waldvogel, M.G., Breisch, N.L. 1983. Temperature modification by bags of the bagworm Thyridopteryx ephemeraeformis (Lepidoptera: Psychidae). The Canadian Entomologist, 115: 855888.CrossRefGoogle Scholar
Danks, H.V. 2002. Modification of adverse conditions by insects. Oikos, 99: 1024.CrossRefGoogle Scholar
Leather, S.R., Walters, K.F.A., Bale, J.S. 1993. The ecology of insect overwintering. Cambridge University Press, New York, New York, United States of America.CrossRefGoogle Scholar
Menard, S. 2000. Coefficients of determination for multiple logistic regression analysis. American Statistician, 54: 1724.Google Scholar
Neal, J.W., Raupp, M.J., Douglass, L.W. 1987. Temperature-dependent model predicting larval emergence of the bagworm, Thyridopteryx ephemeraeformis (Haworth) (Lepidoptera: Psychidae). Environmental Entomology, 16: 11411144.CrossRefGoogle Scholar
Rhainds, M.Fagan, W.F. 2010. Broad-scale latitudinal variation in female reproductive success contributes to the maintenance of a geographic range boundary in bagworms (Lepidoptera: Psychidae). PLoS One, 5: e14166 . doi:10.1371/journal.pone.0014166.CrossRefGoogle Scholar
Rhainds, M., Leather, S.R., Sadof, C. 2008. Polyphagy, flightlessness, and reproductive output of females: a case study with bagworms (Lepidoptera: Psychidae). Ecological Entomology, 33: 663672.CrossRefGoogle Scholar
Rivers, D.B., Antonelli, A.L., Yoder, J.A. 2002. Bags of the bagworm Thyridopteryx ephemeraeformis (Lepidoptera: Psychidae) protect diapausing eggs from water loss and chilling injury. Annals of the Entomological Society of America, 95: 481486.CrossRefGoogle Scholar
Russell, H. 2011. Bagworms extend their reach northward. Michigan State University Extension Bulletin, Turf and Landscape Archive, July 2011, East Lansing, Michigan, United States of America.Google Scholar
Sadof, C.Rhainds, M. 2009. Did the bagworms survive the winter of 2008–2009 [online]. Purdue Extension HN-22-W. Available from http://extension.entm.purdue.edu/publications/HN-22.pdf [accessed 26 November 2012].Google Scholar
Stamp, N.E. 1980. Egg deposition patterns in butterflies: why do some species cluster their eggs rather than deposit them singly? American Naturalist, 115: 367380.CrossRefGoogle Scholar
Tauber, M.J., Tauber, C.A., Masaki, S. 1986. Seasonal adaptations of insects. Oxford University Press, New York, New York, United States of America.Google Scholar
Wollerman, E.H. 1971. Bagworm. United States Department of Agriculture, Forest Pest Leaftlet, 97: 1–7.Google Scholar