Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T16:21:54.616Z Has data issue: false hasContentIssue false

OPTIMAL SAMPLE SIZE FOR THE ESTIMATION OF SPRUCE BUDWORM (LEPIDOPTERA: TORTRICIDAE) POPULATIONS ON BALSAM FIR AND WHITE SPRUCE

Published online by Cambridge University Press:  31 May 2012

Jacques Régnière
Affiliation:
Canadian Forestry Service, Great Lakes Forest Research Centre, Sault Ste Marie, Ontario P6A 5M7
C. J. Sanders
Affiliation:
Canadian Forestry Service, Great Lakes Forest Research Centre, Sault Ste Marie, Ontario P6A 5M7

Abstract

An equation is presented for the determination of sample sizes needed to estimate with a given precision the larval population density of spruce budworm on balsam fir and white spruce branch tips in Ontario. This equation is primarily applicable to low densities, but is valid to a density of 50 larvae/branch tip. The distribution of budworm larvae at densities below 0.1/branch tip is nearly random, and is aggregated at higher densities. Their distribution is the same on the two host species.

Résumé

Une équation est présentée pour la détermination des tailles d'échantillons requises pour estimer avec une certaine précision la densité des larves de la tordeuse des bourgeons de l'épinette, sur le sapin baumier et l'épinette blanche en Ontario. Cette équation est surtout applicable à de faibles densités, mais est valide jusqu'à une densité de 50 larves/bout de branche. Les larves de tordeuse sont distribuées plus ou moins au hazard à des densités inférieures à 0.1/bout de branche, mais sont fortement aggrégées à des densités plus élevées. Leur distribution est la même sur les deux espèces hôtes.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bliss, C. I. 1958. The analysis of insect counts as negative binomial distributions. Proc. 10th int. Congr. Ent. (1956), 2: 10151032.Google Scholar
Brown, M. W. and Cameron, E. A.. 1982. Spatial distribution of adults of Ooencyrtus kuvanae (Hymenoptera: Encyrtidae), and egg parasite of Lymantria dispar (Lepidoptera: Lymantriidae). Can. Ent. 114: 11091120.CrossRefGoogle Scholar
Iwao, S. 1968. A new regression method for analysing the aggregation pattern of animal populations. Researches Popul. Ecol. Kyoto Univ. 10: 120.Google Scholar
Iwao, S. and Kuno, E.. 1968. Use of the regression of mean crowding and mean density for estimating sample size and the transformation of data for the analysis of variance. Researches Popul. Ecol. Kyoto Univ. 10: 210214.Google Scholar
Karandinos, M. G. 1976. Optimum sample size and comments on some published formulae. Bull. ent. Soc. Am. 22: 417421.Google Scholar
Lloyd, M. 1967. Mean crowding. J. Anim. Ecol. 36: 130.CrossRefGoogle Scholar
Miller, C. A., Kettela, E. G., and McDougall, G. A.. 1972. Sampling methods in spruce budworm surveys. Can. For. Serv. Bi-mon. Res. Notes 28: 31.Google Scholar
Morris, R. F. 1955. The development of sampling techniques for forest insect defoliators, with particular reference to the spruce budworm. Can. J. Zool. 33: 225294.CrossRefGoogle Scholar
Sanders, C. J. 1980. A summary of current techniques used for sampling spruce budworm populations and estimating defoliation in eastern Canada. Can. For. Serv. Inf. Rep. 0-X-306. 33 pp.Google Scholar
Snedecor, W. G. 1956. Statistical Methods. The Iowa State College Press, Ames. 534 pp.Google Scholar
Taylor, L. R. 1961. Aggregation, variance, and the mean. Nature 189: 732735.CrossRefGoogle Scholar
Waters, W. E. and Henson, W. R.. 1959. Some sampling attributes of the negative binomial distribution with special reference to forest insects. For. Sci. 5: 397412.Google Scholar