Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-05T16:59:45.256Z Has data issue: false hasContentIssue false

Olfactory behavior of convergent lady beetles (Coleoptera: Coccinellidae) to alarm pheromone of green peach aphid (Hemiptera: Aphididae)

Published online by Cambridge University Press:  31 May 2012

E.B. Acar
Affiliation:
Department of Zoology, Brigham Young University, Provo, Utah, United States 84602
J.C. Medina
Affiliation:
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States 84602
M.L. Lee
Affiliation:
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States 84602
G.M. Booth*
Affiliation:
Department of Zoology, Brigham Young University, Provo, Utah, United States 84602
*
2 Author to whom all correspondence should be sent (e-mail: [email protected]).

Abstract

A previous investigation from our laboratory showed that the odor of live green peach aphids, Myzus persicae (Sulzer), highly attracts the convergent lady beetle, Hippodamia convergens Guérin-Méneville. In this study, we isolated the odor and identified it as (E)-β-farnesene (an aphid alarm pheromone) using gas chromatography – mass spectrometry. The olfactory response of the convergent lady beetle to (E)-β-farnesene was investigated using an eight-arm air-flow olfactometer and tracing the pathways of the lady beetles. The results clearly indicate that H. convergens can perceive and orient to (E)-β-farnesene released by green peach aphids. These findings suggest that this species of lady beetle has evolved a sensory system for detecting the green peach aphid alarm pheromone as a means of finding its prey.

Résumé

Une recherche antérieure dans notre laboratoire avait démontré que l’odeur de Pucerons verts du pêcher, Myzus persicae (Sulzer), vivants attire fortement la Coccinelle convergente, Hippodamia convergens Guérin-Méneville. Nous avons isolé l’odeur et l’avons identifiée par chromatographie en phase gazeuse et spectrométrie de masse. Il s’agit de l’(E)-β-farnésène (phéromone d’alerte des pucerons). La réponse olfactive de la Coccinelle convergente a été évaluée au moyen d’un olfactomètre à air, à huit bras, et par l’étude des parcours empruntés par les coccinelles. Les résultats montrent clairement que la coccinelle est capable de percevoir la phéromone émise par les pucerons et de s’orienter en conséquence. Il semble donc que cette espèce de coccinelle ait développé un système sensoriel propre à détecter la phéromone d’alerte du Puceron vert du pêcher et ainsi de repérer ses proies.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bowers, W.S., Nault, L.R., Webb, R.E., Dutky, S.R. 1972. Aphid alarm pheromone: isolation, identification, synthesis. Science (Washington, DC) 177: 1121–2CrossRefGoogle Scholar
Bowers, W.S., Nishino, C., Montgomery, M.E., Nault, L.R. 1977. Structure–activity relationship of analogs of the aphid alarm pheromone, (E)-β-farnesene. Journal of Insect Physiology 23: 697701CrossRefGoogle Scholar
Calabrese, E.J., Sorensen, A.J. 1978. Dispersal and recolonization by Myzus persicae following aphid alarm pheromone exposure. Annals of the Entomological Society of America 71: 181–2CrossRefGoogle Scholar
Carter, M.C., Dixon, A.F.G. 1984. Honeydew: an arrestant stimulus for coccinellids. Ecological Entomology 9: 383–7CrossRefGoogle Scholar
Colett, T.S. 1988. How ladybirds approach nearby stalks: a study of visual selectivity and attention. Journal of Comparative Physiology A 163: 355–63CrossRefGoogle Scholar
Dixon, A.F.G. 1998. Aphid Ecology. 2nd ed. London: Chapman and HallGoogle Scholar
Edwards, L.J., Siddall, J.B., Dunham, L.L., Uden, P., Kislow, C.J. 1973. Trans-β-farnesene, alarm pheromone of the green peach aphid, Myzus persicae (Sulzer). Nature (London) 241: 126–7Google Scholar
Ferran, A., Dixon, A.F.G. 1993. Foraging behavior of ladybird larvae (Coleoptera: Coccinellidae). European Journal of Entomology 90: 383402Google Scholar
Hamilton, R.M., Dogan, E.B., Schaalje, G.B., Booth, G.M. 1999. Olfactory response of the lady beetle Hippodamia convergens (Col.: Coccinellidae) to prey related odors, including a SEM study of the antennal sensillae. Environmental Entomology 28: 812–22CrossRefGoogle Scholar
Hardie, J., Minks, A.K. (Editors). 1999. Pheromones of non-lepidopteran insects associated with agricultural plants. New York: CABI PublishingGoogle Scholar
Hedin, P.A., Phillips, V.A., Dysart, R.J. 1991. Volatile constituents from honeysuckle aphids, Hyadaphis tataricae, and the honeysuckle, Lonicera spp.: search for assembling pheromones. Journal of Agricultural and Food Chemistry 39: 1304–6CrossRefGoogle Scholar
Heidari, M., Copland, M.J.W. 1992. Host finding by Cryptolaemus montrouzieri (Col., Coccinellidae) a predator of mealybugs (Hom., Pseudococcidae). Entomophaga 37: 621–5CrossRefGoogle Scholar
Khalil, S.K., Shah, M.A., Baloch, U.K. 1985. Optical orientation in predatory coccinellids. Pakistan Journal of Agricultural Research 6: 40–4Google Scholar
Liu, B., Şengonca, Ç. 1994. Development of 8-armed airflow olfactometers for measuring olfactory responses of insect predators. Anzeiger fuer Schaedlingskunde Pflanzenschutz Umweltschutz 67: 30–4CrossRefGoogle Scholar
Metcalf, R.L., Metcalf, R.A. 1993. Destructive and useful insects. Their habits and control. 5th ed. New York: McGraw-Hill IncGoogle Scholar
Nakamuta, K. 1982. Switchover in searching behavior of Coccinella septempunctata L. (Coleoptera: Coccinellidae) caused by prey consumption. Applied Entomology and Zoology 17: 501–6CrossRefGoogle Scholar
Nakamuta, K. 1984. Visual orientation of a lady beetle, Coccinella septempunctata L., (Col.: Coccinellidae) caused by prey consumption. Applied Entomology and Zoology 19: 82–6Google Scholar
Nakamuta, K. 1985. Mechanism of the switchover from extensive to area-concentrated search behaviour of the ladybird beetle, Coccinella septempunctata bruckii. Journal of Insect Physiology 31: 849–56CrossRefGoogle Scholar
Nakamuta, K. 1991. Aphid alarm pheromone component, (E)-β-farnesene, and a local search by a predatory lady beetle, Coccinella septempunctata. Applied Entomology and Zoology 26: 17CrossRefGoogle Scholar
Nault, L.R., Montgomery, M.E., Bowers, W.S. 1976. Ant-aphid association: role of aphid alarm pheromone. Science (Washington, DC) 192: 1349–51CrossRefGoogle ScholarPubMed
Obata, S. 1986. Mechanisms of prey finding in the aphidophagous ladybird beetle, Harmonia axyridis (Coleoptera: Coccinellidae). Entomophaga 31: 303–11CrossRefGoogle Scholar
Phelan, P.L., Montgomery, M.E., Nault, L.R. 1976. Orientation and locomotion of apterous aphids dislodged from their hosts by alarm pheromone. Annals of the Entomological Society of America 69: 1153–6Google Scholar
Pickett, J.A. 1989. Semiochemicals for aphid control. Journal of Biological Education 23: 180–6CrossRefGoogle Scholar
Rice, A.D., Gibson, R.W., Stribley, M.F. 1983. Alarm pheromone secretion by insecticide-susceptible and -resistant Myzus persicae treated with demeton-S-methyl: aphid dispersal and transfer of plant viruses. Annals of Applied Biology 103: 375–81Google Scholar
Şengonca, Ç, Liu, B. 1994. Responses of the different instar predator, Coccinella septempunctata L., to the kairomones produced by the prey and non-prey insects as well as the predator itself. Zeitschrift fuer Pflanzenkrankheiten und Pflanzenschutz 101: 173–7Google Scholar
SPSS. 1997. SPSS (statistical package for the social sciences) version 7.5 edition: user's manual. Chicago: SPSSGoogle Scholar
Stubbs, M. 1980. Another look at prey detection in coccinellids. Ecological Entomology 5: 179–82CrossRefGoogle Scholar
Udayagiri, S., Mason, C.E., Pesek, J.D. Jr. 1997. Coleomegilla maculata, Coccinella septempunctata (Coleoptera: Coccinellidae), Chrysopa carnea (Neuroptera: Chrysopidae), and Macrocentrus grandii (Hymenoptera: Braconidae) trapped on colored sticky traps in corn habitats. Environmental Entomology 26: 983–8CrossRefGoogle Scholar