Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T11:48:14.376Z Has data issue: false hasContentIssue false

The oldest Inocelliidae (Raphidioptera) from the Eocene of western North America

Published online by Cambridge University Press:  18 June 2019

Vladimir N. Makarkin
Affiliation:
Laboratory of Entomology, Federal Scientific Centre of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 100 let Vladivostoku 159, 690022, Vladivostok, Russia
S. Bruce Archibald*
Affiliation:
Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada; Museum of Comparative Zoology, 26 Oxford Street, Cambridge, Massachusetts, 02138, United States of America; Royal British Columbia Museum, 675 Belleville Street, Victoria, British Columbia, V8W 9W2, Canada
James E. Jepson
Affiliation:
School of Biological, Earth and Environmental Science, University College Cork, Distillery Fields, North Mall, Cork, T23 N73K, Ireland
*
1Corresponding author (e-mail: [email protected])

Abstract

One new genus of Inocelliidae (Raphidioptera) with one new species and one undetermined specimen is described from the Eocene of North America: Paraksenocellia borealisnew genus, new species from the early Eocene (Ypresian) Okanagan Highlands shale at Driftwood Canyon, British Columbia, Canada (a forewing), and Paraksenocellia species from the middle Eocene (Lutetian) of the Coal Creek Member of the Kishenehn Formation, northwestern Montana, United States of America (a hind wing). These are the oldest records of the family. The new genus possesses many character states that are rare in Inocelliidae, e.g., a very long pterostigma extending to ScP in both the forewings and hind wings; the forewing subcostal space has three crossveins; the forewing and hind wing AA1 are deeply forked; the crossvein between CuA and CuP is located far distad the crossvein 1r-m. Paraksenocellia is confidently a member of the Inocelliidae, as it possesses a proximal shift of the basal crossvein 1r-m (connecting R and M) in the forewing and the loss of the basal crossvein 1r-m in the hind wing, both apomorphies of the family. It shares some character states with the Mesozoic Mesoraphidiidae, which we consider to be mostly stem-group plesiomorphies.

Type
Biodiversity and Evolution
Copyright
© Entomological Society of Canada 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Archibald, S.B., Bossert, W.H., Greenwood, D.R., and Farrell, B.D. 2010. Seasonality, the latitudinal gradient of diversity, and Eocene insects. Paleobiology, 36: 374398.CrossRefGoogle Scholar
Archibald, S.B. and Farrell, B.D. 2003. Wheeler’s dilemma. Proceedings of the Second Paleoentomological Congress. Acta Zoologica Crakoviensia, 46: 1723.Google Scholar
Archibald, S.B., Greenwood, D.R., and Mathewes, R.W. 2013. Seasonality, montane beta diversity, and Eocene insects: testing Janzen’s dispersal hypothesis in an equable world. Palaeogeography, Palaeoclimatology, Palaeoecology, 371: 18.CrossRefGoogle Scholar
Archibald, S.B., Greenwood, D.R., Smith, R.Y., Mathewes, R.W., and Basinger, J.F. 2011. Great Canadian Lagerstätten 1. Early Eocene Lagerstätten of the Okanagan Highlands (British Columbia and Washington State). Geoscience Canada, 38: 155164.Google Scholar
Archibald, S.B., Morse, G.E., Greenwood, D.R., and Mathewes, R.W. 2014. Fossil palm beetles refine upland winter temperatures in the Early Eocene Climatic Optimum. Proceedings of the National Academy of Sciences of the United States of America, 111: 80958100.CrossRefGoogle ScholarPubMed
Aspöck, H. 2002. The biology of Raphidioptera: a review of present knowledge. Acta Zoologica Academiae Scientiarum Hungaricae, 48: 3550.Google Scholar
Aspöck, H. and Aspöck, U. 1974. Raphidia (Magnoraphidia) flammi Asp. et Asp. und Raphidia (Magnoraphidia) horticola Asp. et Asp. – Taxonomie und Verbreitung (Neuropt., Raphidioptera, Raphidiidae). Zeitschrift der Arbeitsgemeinschaft Österreichischer Entomologen, 24: 140146.Google Scholar
Aspöck, H., Aspöck, U., and Rausch, H. 1991. Die Raphidiopteren der Erde. Eine monographische Darstellung der Systematik, Taxonomie, Biologie, Ökologie und Chorologie der rezenten Raphidiopteren der Erde, mit einer zusammenfassenden Übersicht der fossilen Raphidiopteren (Insecta: Neuropteroidea). Two volumes. Goecke & Evers, Krefeld, Germany. Pp. 550730.Google Scholar
Aspöck, U. and Aspöck, H. 2004. Two significant new snakeflies from Baltic amber, with discussion on autapomorphies of the order and its included taxa (Raphidioptera). Systematic Entomology, 29: 1119.CrossRefGoogle Scholar
Carpenter, F.M. 1936. Revision of the Nearctic Raphidiodea (recent and fossil). Proceedings of the American Academy of Arts and Science, 71: 89157.CrossRefGoogle Scholar
Carpenter, F.M. 1957. The Baltic amber snake-flies Neuroptera. Psyche, 63: 7781.CrossRefGoogle Scholar
Constenius, K.N. 1996. Late Paleogene extensional collapse of the Cordilleran foreland fold and thrust belt. The Geological Society of America Bulletin, 108: 2039.2.3.CO;2>CrossRefGoogle Scholar
Dawson, M.R. and Constenius, K.N. 2018. Mammalian fauna of the middle Eocene Kishenehn Formation, middle fork of the Flathead River, Montana. Annals of Carnegie Museum, 85: 2560.CrossRefGoogle Scholar
Engel, M.S. 1998. A new fossil snake-fly species from Baltic amber (Raphidioptera: Inocellidae). Psyche, 102: 187193.CrossRefGoogle Scholar
Engel, M.S. 2002. The smallest snakefly (Raphidioptera: Mesoraphidiidae): a new species in Cretaceous amber from Myanmar, with a catalog of fossil snakeflies. American Museum Novitates, 3363: 122.2.0.CO;2>CrossRefGoogle Scholar
Greenwalt, D.E., Rose, T.R., Siljeström, S.M., Goreva, Y.S., Constenius, K.N., and Wingerath, J.G. 2015. Taphonomy of the fossil insects of the middle Eocene Kishenehn Formation. Acta Palaeontologica Polonica, 60: 931947.Google Scholar
Greenwood, D.R., Archibald, S.B., Mathewes, R.W., and Moss, P.T. 2005. Fossil biotas from the Okanagan Highlands, southern British Columbia and northern Washington State: climates and ecosystems across an Eocene landscape. Canadian Journal of Earth Sciences, 42: 167185.Google Scholar
Grimaldi, D. and Engel, M.S. 2005. Evolution of the insects. Cambridge University Press, New York, New York, United States of America.Google Scholar
Hörnschemeyer, T., Wedmann, S., and Poinar, G. 2010. How long can insect species exist? Evidence from extant and fossil Micromalthus beetles (Insecta: Coleoptera). Zoological Journal of the Linnean Society, 158: 300311.CrossRefGoogle Scholar
Liu, X.Y., Aspöck, H., Yang, D., and Aspöck, U. 2010. Revision of the snakefly genus Mongoloraphidia (Raphidioptera, Raphidiidae) from mainland China. Deutsche Entomologische Zeitschrift, 57: 8998.Google Scholar
Liu, X.Y., Aspöck, H., Zhang, W.W., and Aspöck, U. 2012. A review of the snakefly genus Sininocellia (Raphidioptera, Inocelliidae): discovery of the first male and description of a new species from China. Deutsche Entomologische Zeitschrift, 59: 233240.Google Scholar
Liu, X.Y., Lu, X.M., and Zhang, W.W. 2016. New genera and species of the minute snakeflies (Raphidioptera: Mesoraphidiidae: Nanoraphidiini) from the mid Cretaceous of Myanmar. Zootaxa, 4103: 301324.CrossRefGoogle ScholarPubMed
, Y.N., Liu, X.Y., and Ren, D. 2015. First record of the fossil snakefly genus Mesoraphidia (Insecta: Raphidioptera: Mesoraphidiidae) from the Middle Jurassic of China, with description of a new species. Zootaxa, 3999: 560570.CrossRefGoogle ScholarPubMed
Lyu, Y.N., Ren, D., and Liu, X.Y. 2017. Review of the fossil snakefly family Mesoraphidiidae (Insecta: Raphidioptera) in the Middle Jurassic of China, with description of a new species. Alcheringa, 41: 403412.CrossRefGoogle Scholar
Makarkin, V.N. and Archibald, S.B. 2014. A revision of the late Eocene snakeflies (Raphidioptera) of the Florissant Formation, Colorado, with special reference to the wing venation of the Raphidiomorpha. Zootaxa, 3784: 401444.CrossRefGoogle ScholarPubMed
Möller Andersen, N., Spence, J.R., and Wilson, M.V.H. 1993. 50 Million years of structural stasis in water striders (Hemiptera: Gerridae). American Entomologist, 39: 174176.CrossRefGoogle Scholar
Moss, P.T., Greenwood, D.R., and Archibald, S.B. 2005. Regional and local vegetation community dynamics of the Eocene Okanagan Highlands (British Columbia-Washington State) from palynology. Canadian Journal of Earth Sciences, 42: 187204.Google Scholar
Nel, A. 1993. Nouveaux Raphidioptères fossiles du Cénozoïque de France et d’Espagne (Raphidioptera, Raphidiidae, Inocelliidae). Ecole Pratique des Hautes Etudes, Biologie et Evolution des Insectes, 6: 99108.Google Scholar
Oswald, J.D. 1993. Revision and cladistic analysis of the world genera of the family Hemerobiidae (Insecta: Neuroptera). Journal of the New York Entomological Society, 101: 143299.Google Scholar
Oswald, J.D. 2018. Neuropterida species of the world. Version 6.0 [online]. Available from http://lacewing.tamu.edu/SpeciesCatalog/Main [accessed 13 August 2018].Google Scholar
Pierce, H.G. and Constenius, K.N. 2014. Terrestrial and aquatic mollusks of the Eocene Kishenehn Formation, Middle Fork Flathead River, Montana. Annals of the Carnegie Museum, 82: 305329.Google Scholar
Withycombe, C.L. 1923. The wing venation of Raphidia maculicollis Stephens. The Entomologist, 56: 3335.Google Scholar