Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-14T13:39:30.308Z Has data issue: false hasContentIssue false

Occurrence of late-emerging populations of the blueberry maggot fly (Diptera: Tephritidae)

Published online by Cambridge University Press:  31 May 2012

L.A.F. Teixeira
Affiliation:
Blueberry and Cranberry Research and Extension Center, Rutgers University, 125A Lake Oswego Road, Chatsworth, New Jersey, United States 08019
S. Polavarapu*
Affiliation:
Blueberry and Cranberry Research and Extension Center, Rutgers University, 125A Lake Oswego Road, Chatsworth, New Jersey, United States 08019
*
1 Author to whom all correspondence should be addressed (E-mail: [email protected]).

Abstract

Monitoring of adult flight patterns of the blueberry maggot fly, Rhagoletis mendax Curran, in New Jersey, indicated that the adults are active over a much longer period than previously reported. Captures on Pherocon AM traps over two seasons in wild sites and commercial fields of highbush blueberry, Vaccinium corymbosum L. (Ericaceae), showed that adult flies are present for most of the period from early July to early November. Trap captures in wild sites peaked during July–August, whereas in some commercial fields, peak captures were recorded in September. Emergence patterns were determined by collecting pupae from a wild site and a commercial field at the time of peak fruit infestation. The following year, the wild-site and commercial-field populations showed distinct emergence periods that were in broad agreement with trap captures at these locations. Comparison of an allozyme locus, using individuals collected in commercial blueberry fields, both on Pherocon AM traps and from infested fruit, confirmed that these populations were R. mendax and not any of the sibling species with a similar flight period. These data show that there are considerable phenological differences between some R. mendax populations. Given this plasticity, current debates on evolutionary mechanisms in flies of the genus Rhagoletis Loew should consider that the flight period of R. mendax is probably neither a major limiting factor in the use of hosts with different fruiting schedules nor an effective premating isolation mechanism with respect to other sibling species.

Résumé

L’analyse de la phénologie des adultes de la Mouche de l’airelle, Rhagoletis mendax Curran, au New Jersey, a révélé que les adultes sont actifs sur une période beaucoup plus longue qu’on ne le croyait à ce jour. Des captures à l’aide de pièges Pherocon AM sur deux saisons à des sites naturels et dans des cultures commerciales de l’airelle en corymbe, Vaccinium corymbosum L. (Ericaceae), ont montré que les adultes sont présents durant presque toute la période qui va du début de juillet au début de novembre. Le maximum de captures a été observé dans les sites naturels en juillet–août, mais seulement en septembre dans certains champs commerciaux. Les patterns d’émergence ont été établis par la récolte de pupes à un site naturel et un site commercial, au moment de l’infestation maximale des fruits. L’année suivante, les populations des deux sites avaient des périodes d’émergence différentes, ce qui correspondait en gros aux captures dans les pièges à ces endroits. La comparaison d’un locus allozymique chez des individus récoltés dans des champs commerciaux, dans les pièges Pherocon AM et dans les fruits infestés, a confirmé qu’il s’agissait bien de R. mendax et non d’une ou l’autre de ses espèces-soeurs à période de vol similaire. Il y a donc des différences importantes dans la phénologie du vol chez certaines populations de R. mendax. Étant donné cette plasticité, il faudra, dans les débats actuels sur les mécanismes évolutifs en opération chez les mouches du genre Rhagoletis Loew, tenir compte du fait que la période de vol chez R. mendax n’est pas un facteur limitant important dans l’exploitation d’hôtes à calendriers de fructification différents, ni un mécanisme d’isolement de l’insecte de ses espèces-soeurs avant l’accouplement.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berlocher, S.H. 1995. Population structure of Rhagoletis mendax, the blueberry maggot. Heredity 74: 542–55CrossRefGoogle Scholar
Berlocher, S.H., McPheron, B.A., Feder, J.L., Bush, G.L. 1993. Genetic differentiation at allozyme loci in the Rhagoletis pomonella (Diptera: Tephritidae) species complex. Annals of the Entomological Society of America 86: 716–27CrossRefGoogle Scholar
Böller, E.F., Prokopy, R.J. 1976. Bionomics and management of Rhagoletis. Annual Review of Entomology 21: 223–46CrossRefGoogle Scholar
Bush, G.L. 1966. The taxonomy, cytology, and evolution of the genus Rhagoletis in North America (Diptera: Tephritidae). Bulletin of the Museum of Comparative Zoology 134: 431562Google Scholar
Canadian Food Inspection Agency. 1999. Requirements for the import and domestic movement of fresh blueberry fruits moving from infested areas in North America to non infested areas in Canada. Nepean, Ontario: Canadian Food Inspection AgencyGoogle Scholar
Feder, J.L., Rhoethele, J.B., Wlazlo, B., Berlocher, S.H. 1997. Selective maintenance of allozyme differences among sympatric host races of the apple maggot fly. Proceedings of the National Academy of Sciences of the United States of America 94: 11 417– 21Google ScholarPubMed
Gaul, S.O., Neilson, W.T.A., Estabrooks, E.N., Crozier, L.M., Fuller, M. 1995. Deployment and utility of traps for management of Rhagoletis mendax (Diptera: Tephritidae). Journal of Economic Entomology 88: 134–9CrossRefGoogle Scholar
Guibord, M.O., Vincent, C., Wood, G.M. 1985. Note sur l' aire de distribution de la mouche du bluet, Rhagoletis mendax (Diptera: Tephritidae), au Canada. Phytoprotection 66: 63–7Google Scholar
Hebert, P.D.N., Beaton, M.J. 1989. Methodologies for allozyme analysis using cellulose acetate electrophoresis: a practical handbook. Guelph, Ontario: University of GuelphGoogle Scholar
International Union of Biochemistry Nomenclature Committee. 1984. Enzyme Nomenclature. Orlando, Florida: International Union of Biochemistry Nomenclature CommitteeGoogle Scholar
Lathrop, F.H., Nickels, C.B. 1932. The biology and control of the blueberry maggot in Washington County, ME. United States Department of Agriculture Technical Bulletin 275Google Scholar
Levene, H. 1949. On a matching problem arising in statistics. Annals of Mathematical Statistics 20: 91–4CrossRefGoogle Scholar
Liburd, O.E., Alm, S.R., Casagrande, R.A. 1998 a. Susceptibility of highbush blueberry cultivars to larval infestation by Rhagoletis mendax (Diptera: Tephritidae). Environmental Entomology 27: 817–21CrossRefGoogle Scholar
Liburd, O.E., Alm, S.R., Casagrande, R.A., Polavarapu, S. 1998 b. Effect of trap color, bait, shape, and orientation in attraction of blueberry maggot (Diptera: Tephritidae) flies. Journal of Economic Entomology 91: 243–9CrossRefGoogle Scholar
Marucci, P.E. 1966. Insects and their control. pp 199235in Eck, P., Childers, N.F. (Eds), Blueberry culture. New Brunswick, New Jersey: Rutgers University PressGoogle Scholar
Payne, J.A., Berlocher, S.H. 1995 a. Distribution and host plants of the blueberry maggot fly, Rhagoletis mendax (Diptera: Tephritidae) in southeastern North America. Journal of the Kansas Entomological Society 68: 133–42Google Scholar
Payne, J.A., Berlocher, S.H. 1995 b. Phenological and electrophoretic evidence for a new blueberry-infesting species in the Rhagoletis pomonella sibling species complex. Entomologia Experimentalis et Applicata 75: 183–7CrossRefGoogle Scholar
Pedigo, L.P. 1996. Entomology and pest management. 2nd ed. Upper Saddle River, New Jersey: Prentice HallGoogle Scholar
Prokopy, R.J. 1968. Influence of photoperiod, temperature, and food on initiation of diapause in the apple maggot. The Canadian Entomologist 100: 318–29CrossRefGoogle Scholar
Prokopy, R.J., Coli, W.M. 1978. Selective traps for monitoring Rhagoletis mendax flies. Protection Ecology 1: 4553Google Scholar
Stone, W. 1973. The plants of southern New Jersey. Boston: Quarterman Publications IncGoogle Scholar
Tauber, M.J., Tauber, C.A., Masaki, S. 1986. Seasonal adaptations of insects. New York: Oxford University PressGoogle Scholar
Vincent, C., Lareau, M.J. 1989. Update on the distribution of the blueberry maggot, Rhagoletis mendax (Diptera: Tephritidae), in Canada. Acta Horticulturae (Wageningen) 241: 333–7CrossRefGoogle Scholar
Weir, B.S. 1979. Inferences about linkage disequilibrium. Biometrics 35: 235–54CrossRefGoogle ScholarPubMed
Yeh, F.C., Yang, R.C., Boyle, T.B.J., Ye, Z.H., Mao, J.X. 1997. Popgene, the user-friendly shareware for population genetic analysis. Edmonton, Alberta: Molecular Biology and Biotechnology Centre, University of AlbertaGoogle Scholar