Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T08:06:55.240Z Has data issue: false hasContentIssue false

OBSERVATIONS ON INTRASPECIFIC LARVAL COMPETITION IN THREE HYMENOPTEROUS PARASITES OF FLY PUPARIA

Published online by Cambridge University Press:  31 May 2012

H. G. Wylie
Affiliation:
Research Institute, Canada Department of Agriculture, Belleville, Ontario

Abstract

Though they may hatch on any part of a housefly (Musca domestica L.) pupa, most larvae of Nasonia vitripennis (Walk.) and Muscidifurax raptor G. & S. (Hymenoptera: Pteromalidae) move to the host’s ventral abdominal area, and those of Spalangia cameroni Perk. (Hymenoptera: Pteromalidae) to the dorsal side of the abdomen, before feeding extensively. As many as 25 larvae of N. vitripennis can mature on a medium-sized housefly pupa; if more are present initially, those that hatch last usually die from starvation after the host has been consumed. In contrast, usually only one larva of M. raptor or S. cameroni matures on a host; this is often the larva that hatches first, because it attacks all parasite eggs that it encounters while moving over the fly pupa soon after hatching. Larval crowding in M. raptor or S. cameroni, unlike that in N. vitripennis, does not affect the sex ratio of the survivors.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bouletreau, M. and David, J.. 1967. Influence de la densité de population larvaire sur la taile des adultes, la durée de développement et la fréquence de la diapause chez Pteromalus puparum L. [Hym., Chalcidien]. Entomophaga 12: 187197.CrossRefGoogle Scholar
Jackson, D. J. 1963. Diapause in Caraphractus cinctus Walker (Hymenoptera: Mymaridae), a parasitoid of the eggs of Dytiscidae (Coleoptera). Parasitology 53: 225251.CrossRefGoogle Scholar
Jackson, D. J. 1966. Observations on the biology of Caraphractus cinctus Walker (Hymenoptera: Mymaridae), a parasitoid of the eggs of Dytiscidae (Coleoptera). III: The adult life and sex ratio. Trans. R. ent. Soc. Lond. 118: 2349.CrossRefGoogle Scholar
Lloyd, D. C. 1939. A study of some factors governing the choice of hosts and distribution of progeny by the chalcid Ooencyrtus kuvanae Howard. Phil. Trans. R. Soc. 229: 275322.Google Scholar
Nicholson, A. J. 1954. An outline of the dynamics of animal populations. Aust. J. Zool. 2: 965.CrossRefGoogle Scholar
Safavi, M. 1968. Etude biologique et écologique des Hyménoptères parasites des oeufs des punaises des céréales. Entomophaga 13: 381495.Google Scholar
Salt, G. 1936. Experimental studies in insect parasitism. IV: The effect of superparasitism on populations of Trichogramma evanescens. J. exp. Biol. 13: 363375.CrossRefGoogle Scholar
Simmnonds, F. J.The occurrence of superparasitism in Nemeritis canescens Grav Revue can. Biol. 2: 1558.Google Scholar
Walker, I. 1967. Effect of population density on the viability and fecundity in Nasonia vitripennis Walker (Hymenoptera, Pteromalidae). Ecology 48: 294301.CrossRefGoogle Scholar
Wilkes, A. 1963. Environmental causes of variation in the sex ratio of an arrhenotokous insect, Dahlbominus fuliginosus (Nees). Can. Ent. 95: 183202.CrossRefGoogle Scholar
Wylie, H. G. 1965 a. Effects of superparasitism on Nasonia vitripennis (Walk.) (Hymenoptera: Pteromalidae). Can. Ent. 97: 326331.CrossRefGoogle Scholar
Wylie, H. G. 1965 b. Some factors that reduce the reproductive rate of Nasonia vitripennis (Walk.) at high adult population densities. Can. Ent. 97: 970977.CrossRefGoogle Scholar
Wylie, H. G. 1966. Some mechanisms that effect the sex ratio of Nasonia vitripennis (Walk.) (Hymenoptera: Pteromalidae) reared from superparasitized housefly pupae. Can. Ent. 98: 645653.CrossRefGoogle Scholar