Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T14:16:28.792Z Has data issue: false hasContentIssue false

NYMPHAL DENSITY AND LIFE HISTORIES OF TWO WATER STRIDERS (HEMIPTERA: GERRIDAE)

Published online by Cambridge University Press:  31 May 2012

Tetsuo Harada
Affiliation:
Biological Laboratory, Faculty of Education, Kochi University, Kochi 780, Japan
John R. Spence*
Affiliation:
Department of Biological Sciences, University of Alberta, CW 405A, Biological Sciences Centre, Edmonton, Alberta, Canada T6G 2E9
*
1 Author to whom all corresponding should be addressed (E-mail: [email protected]).

Abstract

We used laboratory experiments to study the effects of rearing density on nymphal duration, dispersal dimorphism, and reproduction of two wing-dimorphic water strider species, Gerris buenoi Kirkaldy (wing morphs macropterous and micropterous) and Gerris pingreensis Drake and Hottes (mainly apterous and macropterous), that specialize, respectively, in temporary and permanent habitats. First-instar nymphs from field-collected or laboratory-cultured parents were reared with superabundant food at high (2900 or 3100 first-instar individuals/m2) or low (145 or 155 first-instar individuals/m2) starting density under a photoperiod of 19L:5D and at 20 ± 2 °C. Average nymphal period of both species under high density was significantly shorter by 4–5 d than under low density. There were no significant differences in percent survival between densities in either species. In G. pingreensis all new adults were apterous and entered reproductive diapause. In contrast, both wing morphs were expressed in G. buenoi; however, a lower proportion of macropters emerged under high density than under low density. All females of G. buenoi tested were reproductively active, regardless of wing morph. There was no effect of density on preoviposition period for G. buenoi of either wing morph, although preoviposition period was about twice as long in long-winged as in short-winged females. In G. buenoi, nymphal crowding promotes development of nonflying reproductives, which allocate nutritional resources to rapid reproduction rather than dispersal, at least when food conditions are sufficient. In G. pingreensis, nymphs that develop faster under crowding may be less subject to cannibalism and intraguild predation.

Résumé

Nous avons mis au point des expériences en laboratoire pour étudier les effets de la densité des élevages sur la durée du stade larvaire, le dimorphisme à la dispersion et la reproduction chez deux espèces de patineurs, Gerris buenoi Kirkaldy (formes macroptères et formes microptèrese) et Gerris pingreensis Drake et Hottes (formes surtout aptères et microptères), qui se spécialisent respectivement dans les habitats temporaires et les habitats permanents. Les larves de premier stade provenant de parents récoltés en nature ou élevés en laboratoire ont été soumises à un régime de nourriture en surabondance et à une densité de départ élevée (2900 ou 3100 larves de premier stade/m2) ou faible (124 ou 155 larves/m2) à une photopériode de 19L : 5O, à 20 ± 2 °C. La durée moyenne de la vie larvaire chez les individus élevés à haute densité s’est avérée significativement plus courte, de 4–5 jours, que la survie des individus élevés à faible densité. En revanche, la survie, exprimée en pourcentage, n’était pas affectée par la densité. Chez G. pingreensis, tous les nouveaux adultes étaient aptères et ils sont entrés en diapause de reproduction. Par ailleurs, les deux formes alaires étaient exprimées chez G. buenoi; cependant, l’élevage à haute densité a donné lieu à une proportion moins grande d’individus macroptères que l’élevage à faible densité. Toutes les femelles de G. buenoi testées, d’une forme ou l’autre, étaient sexuellement actives. La densité n’avait pas d’effet sur la période de préponte chez les G. buenoi de l’une ou l’autre forme, mais cette période durait environ deux fois plus longtemps chez les femelles macroptères que chez les femelles microptères. Chez G. buenoi, l’entassement des larves de premier stade favorise le développement de reproducteurs incapables de voler, ce qui canalise les ressources vers une reproduction rapide plutôt que vers la dispersion, du moins lorsque la nourriture est suffisamment abondante. Chez G. pingreensis, les larves qui se développent plus rapidement en conditions d’entassement sont probablement moins sujettes au cannibalisme ou à la prédation entre guildes.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, N.M. 1973. Seasonal polymorphism and developmental changes in organs of flight and reproduction in bivoltine pondskaters (Hem. Gerridae). Entomologica Scandinavica 4: 120CrossRefGoogle Scholar
Andersen, N.M. 1982. The semiquatic bugs (Hemiptera: Gerromorpha), phylogeny, adaptions, biogeography and classification. Entomonograph 3: 1455Google Scholar
Andersen, N.M. 1993. The evolution of wing polymorphism in water striders (Gerridae): a phylogenetic approach. Oikos 67: 433–43CrossRefGoogle Scholar
Atmospheric Environment Service. 1982. Canadian climate normals. Vol. 3. Precipitation 1951–1980. Ottawa: Environment CanadaGoogle Scholar
Dingle, H. 1985. Migration and life histories. pp. 2744in Rankin, M.A. (Ed.), Migration: mechanisms and adaptive significance. Contributions to Marine Science (Suppl.) 27Google Scholar
Fairbairn, D.J. 1994. Wing dimorphism and the migratory syndrome. pp. 143–52 in Nakasuji, F., Fujisaki, K. (Eds.), Proceedings of Memorial and International Symposium on Dispersal Polymorphism of Insects. Okayama: Okayama UniversityGoogle Scholar
Fairbairn, D.J., Desranleau, L. 1987. Flight threshold, wing muscle histolysis, and alary polymorphisms: correlated traits for dispersal tendency in the Gerridae. Ecological Entomology 12: 1324CrossRefGoogle Scholar
Fujisaki, K. 1994. Evolution of dispersal polymorphisms in insects: a close examination of Roff's theory. Japanese Journal of Applied Entomology and Zoology 38: 231–44 [In Japanese]CrossRefGoogle Scholar
Harada, T. 1992. The oviposition process in two direct breeding generations in a water strider, Aquarius paludum (Fabricius). Journal of Insect Physiology 38: 687–92CrossRefGoogle Scholar
Harada, T. 1996. Effects of population density on the duration of nymphal period and diapause-posture at the adult stage in a water strider, Gerris latiabdominis (Hemiptera: Gerridae). Japanese Journal of Entomology 64: 413–9Google Scholar
Harada, T., Tabuchi, R., Koura, J. 1997. Migratory syndrome in the water strider Aquarius paludum (Heteroptera: Gerridae) reared in high versus low nymphal densities. European Journal of Entomology 94: 445–52Google Scholar
Järvinen, O., Nummelin, M., Vepsäläinen, K. 1977. A method for estimating population densities of water-striders (Gerris). Notulae Entomologicae 57: 25–8Google Scholar
Klingenberg, C.P., Spence, J.R. 1997. On the role of body size for life history evolution. Ecological Entomology 22: 5568CrossRefGoogle Scholar
Muraji, M., Miura, T., Nakasuji, F. 1989. Phenological studies on the wing dimorphism of a semi-aquatic bug, Microvelia douglasi (Heteroptera: Velliidae). Researches in Population Ecology 31: 129–38CrossRefGoogle Scholar
Palmer, J.O. 1985. Ecological genetics of wing length, flight propensity, and early fecundity in a migratory insect. pp. 663–73 in Rankin, M.A. (Ed.), Migration: mechanisms and adaptive significance. Contributions in Marine Science (Suppl.) 27Google Scholar
Roff, D.A. 1986. Evolution of wing dimorphism in insects. Evolution 40: 1009–20CrossRefGoogle ScholarPubMed
Roff, D.A. 1990. Antagonistic pleiotropy and the evolution of wing dimorphism in the sand cricket, Gryllus firmus. Heredity 65: 169–77CrossRefGoogle Scholar
Southwood, T.R.E. 1977. Habitat, the templet for ecological strategies? Journal of Animal Ecology 46: 337–65CrossRefGoogle Scholar
Spence, J.R. 1980. Density estimation for water-striders (Heteroptera: Gerridae). Freshwater Biology 10: 563–70CrossRefGoogle Scholar
Spence, J.R. 1983. Pattern and process in co-existence of water-striders (Heteroptera: Gerridae). Journal of Animal Ecology 52: 497512CrossRefGoogle Scholar
Spence, J.R. 1986 a. Relative impacts of mortality factors in a field population of Gerris buenoi Kirkaldy (Heteroptera: Gerridae). Oecologia 70: 6876CrossRefGoogle Scholar
Spence, J.R. 1986 b. Interactions between the scelionid egg parasitoid Tiphodytes gerriphagus (Hymenoptera) and its gerrid hosts (Heteroptera). Canadian Journal of Zoology 64: 2728–38CrossRefGoogle Scholar
Spence, J.R. 1989. The habitat templet and life history strategies of pond skaters (Heteroptera: Gerridae): reproductive potential, phenology, and wing dimorphism. Canadian Journal of Zoology 67: 2432–47CrossRefGoogle Scholar
Spence, J.R. 2000. Seasonal aspects of flight in water striders (Hemiptera: Gerridae). Entomological Science 3. In pressGoogle Scholar
Spence, J.R., Andersen, N.M. 1994. Biology of water striders: interactions between systematics and ecology. Annual Review of Entomology 39: 101–28CrossRefGoogle Scholar
Spence, J.R., Cárcamo, H.A. 1991. Effects of cannibalism and intraguild predation on pondskaters (Gerridae). Oikos 62: 333–41CrossRefGoogle Scholar
Spence, J.R., Scudder, G.G.E. 1980. Habitats, life cycles and guild structure of waterstriders (Heteroptera: Gerridae) on the Fraser Plateau of British Columbia. The Canadian Entomologist 112: 779–92CrossRefGoogle Scholar
Vepsäläinen, K. 1974. The life cycles and wing lengths of Finnish Gerris Fabr. species (Heteroptera, Gerridae). Acta Zoologica Fennica 141: 173Google Scholar
Vepsäläinen, K. 1978. Wing dimorphism and diapause in Gerris: determination and adaptive significance. pp. 218–53 in Dingle, H. (Ed.), Evolution of insect migration and diapause. New York: Springer-VerlagCrossRefGoogle Scholar
Zera, A.J. 1984. Differences in survivorship, development rate and fertility between the longwinged and wingless morphs of the waterstrider, Limnoporus canaliculatus. Evolution 38: 1023–32CrossRefGoogle ScholarPubMed