Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T16:45:12.312Z Has data issue: false hasContentIssue false

A new genus and species of split-footed lacewings (Neuroptera) from the early Eocene of western Canada and revision of the subfamily affinities of Mesozoic Nymphidae

Published online by Cambridge University Press:  19 March 2020

S. Bruce Archibald
Affiliation:
Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada Museum of Comparative Zoology, 26 Oxford Street, Cambridge, Massachusetts, 02138, United States of America Royal British Columbia Museum, 675 Belleville Street, Victoria, British Columbia, V8W 9W2, Canada
Vladimir N. Makarkin*
Affiliation:
Laboratory of Entomology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 100 let Vladivostoku 159, 690022, Vladivostok, Russia
*
*Corresponding author. Email: [email protected]

Abstract

A new genus and new species of Nymphidae (Neuroptera) is described from the Ypresian Okanagan Highlands locality of Falkland, British Columbia, Canada: Epinesydrion falklandensisnew genus, new species. This is only the fourth known Cenozoic adult specimen, and all others are less complete. It is the second specimen from the Okanagan Highlands. Currently Nymphidae has two recognised subfamilies. All Cenozoic fossils are confident members of the Nymphinae, but the subfamily assignments of almost all Mesozoic genera are problematic. The Late Cretaceous Dactylomyius is the only genus that might belong to Myiodactylinae. The rest may belong to the undefined stem groups of the family or to the Nymphinae, with varying levels of probability. Mesonymphes sibirica is transferred to Nymphites Haase: N. sibiricus (Ponomarenko), new combination; Sialium minor to Spilonymphes Shi, Winterton, and Ren: Spilonymphes minor (Shi, Winterton, and Ren), new combination; “Mesonymphesapicalis does not belong to Mesonymphes Carpenter and may not even belong to the Nymphidae. The fossil record of the family occurs across much of the globe, but today they are restricted to Australia, New Guinea, and possibly the Philippines. Modern Nymphinae is only found in Australia. This may result from a requirement of frost-free climates, which were more widespread in the past.

Type
Research Papers
Copyright
© 2020 Entomological Society of Canada

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Archibald, S.B., Bossert, W.H., Greenwood, D.R., and Farrell, B.D. 2010. Seasonality, the latitudinal gradient of diversity, and Eocene insects. Paleobiology, 36: 374398.CrossRefGoogle Scholar
Archibald, S.B., Cover, S.D., and Moreau, C.S. 2006. Bulldog ants of the Eocene Okanagan Highlands, and the history of the subfamily (Hymenoptera: Formicidae: Myrmeciinae). Annals of the Entomological Society of America, 99: 487523.10.1603/0013-8746(2006)99[487:BAOTEO]2.0.CO;2CrossRefGoogle Scholar
Archibald, S.B. and Farrell, B.D. 2003. Wheeler’s dilemma. Proceedings of the Second Paleoentomological Congress, Acta Zoologica Crakoviensia, 46 (supplement): 1723.Google Scholar
Archibald, S.B., Greenwood, D.R., Smith, R.Y., Mathewes, R.W., and Basinger, J.F. 2011a. Great Canadian Lagerstätten. 1. Early Eocene Lagerstätten of the Okanagan Highlands (British Columbia and Washington State). Geoscience Canada, 38: 145154.Google Scholar
Archibald, S.B., Johnson, K.R., Mathewes, R.W., and Greenwood, D.R. 2011b. Intercontinental dispersal of giant thermophilic ants across the Arctic during early Eocene hyperthermals. Proceedings of the Royal Society B, 278: 36793686.CrossRefGoogle ScholarPubMed
Archibald, S.B., Makarkin, V.N., and Ansorge, J. 2009. New fossil species of Nymphidae (Neuroptera) from the Eocene of North America and Europe. Zootaxa, 2157: 5968.CrossRefGoogle Scholar
Archibald, S.B., Makarkin, V.N., Greenwood, D.R., and Gunnell, G.F. 2014a. The red queen and court jester in green lacewing evolution: bat predation and global climate change. Palaios, 29: 185191.CrossRefGoogle Scholar
Archibald, S.B. and Mathewes, R.W. 2000. Early Eocene insects from Quilchena, British Columbia and their paleoclimatic implications. Canadian Journal of Zoology, 78: 14411462.10.1139/z00-070CrossRefGoogle Scholar
Archibald, S.B., Mathewes, R.W., and Greenwood, D.R. 2013. The Eocene apex of panorpoid scorpionfly family diversity. Journal of Paleontology, 87: 677695.CrossRefGoogle Scholar
Archibald, S.B., Morse, G.E., Greenwood, D.R., and Mathewes, R.W. 2014b. Fossil palm beetles refine upland winter temperatures in the early Eocene climatic optimum. Proceedings of the National Academy of Sciences of the United States of America, 111: 80958100.CrossRefGoogle ScholarPubMed
Archibald, S.B. and Rasnitsyn, A.P. 2015. New early Eocene Siricomorpha (Hymenoptera: Symphyta: Pamphiliidae, Siricidae, Cephidae) from the Okanagan Highlands, western North America. The Canadian Entomologist, 148: 209228.CrossRefGoogle Scholar
Archibald, S.B., Rasnitsyn, A.P., and Akhmetiev, M.A. 2005. The ecology and distribution of Cenozoic Eomeropidae (Mecoptera), and a new species of Eomerope Cockerell from the early Eocene McAbee locality, British Columbia, Canada. Annals of the Entomological Society of America, 98: 503514.CrossRefGoogle Scholar
Archibald, S.B., Rasnitsyn, A.P., Brothers, D.J., and Mathewes, R.W. 2018. Modernisation of the Hymenoptera: ants, bees, wasps, and sawflies of the early Eocene Okanagan Highlands of western North America. The Canadian Entomologist, 150: 205257.CrossRefGoogle Scholar
Badano, D., Engel, M.S., Basso, A., Wang, B., and Cerretti, P. 2018. Diverse Cretaceous larvae reveal the evolutionary and behavioural history of antlions and lacewings. Nature Communications, 9: article 3257, 114.CrossRefGoogle ScholarPubMed
Bugdaeva, E.V. and Markevich, V.S. 2012. The age of Lycoptera beds (Jehol biota) in Transbaikalia (Russia), and correlation with Mongolia and China. In Bernissart dinosaurs and Early Cretaceous terrestrial ecosystems. Edited by Godefroit, P.. Indiana University Press, Bloomington, Indiana, United States of America. Pp. 453464.Google Scholar
Carpenter, F.M. 1929. A Jurassic Neuropteran from the Lithographic Limestone of Bavaria. Psyche, 36: 190194.CrossRefGoogle Scholar
Douglas, S.D. and Stockey, R.A. 1996. Insect fossils in middle Eocene deposits from British Columbia and Washington State: faunal diversity and geological range extensions. Canadian Journal of Zoology, 74: 11401157.CrossRefGoogle Scholar
Engel, M.S. and Grimaldi, D.A. 2008. Diverse Neuropterida in Cretaceous amber, with particular reference to the paleofauna of Myanmar (Insecta). Nova Supplementa Entomologica, 20: 186.Google Scholar
Global Biodiversity Information Facility. 2019. Global Biodiversity Information Facility. Occurrence downloads for individual genera of Nymphidae [online]. Available from www.gbif.org [accessed 3 February 2020].Google Scholar
Huang, D.Y., Cai, C.Y., Fu, Y.Z., and Su, Y.T. 2018. The Middle-Late Jurassic Yanliao entomofauna. Palaeoentomology, 1: 331.CrossRefGoogle Scholar
Jepson, J.E., Makarkin, V.N., and Coram, R.A. 2012. Lacewings (Insecta: Neuroptera) from the Lower Cretaceous Purbeck Limestone Group of southern England. Cretaceous Research, 34: 3147.CrossRefGoogle Scholar
Kocorek, A. and Ghate, H. 2012. Megymenum distanti, a new remarkable species of the Dinidoridae subfamily Megymeninae (Hemiptera: Heteroptera: Dinidoridae) from India. Zootaxa, 3218: 3139.CrossRefGoogle Scholar
Krüger, L. 1923. Neuroptera succinica baltica. Die im baltischen Bernstein eingeschlossenen Neuroptera des Westpreussischen Provinzial-Museums (heute Museum für Naturkunde und Vorgeschichte) in Danzig. Stettiner Entomologische Zeitung, 84: 6892.Google Scholar
MacLeod, E.G. 1971. The Neuroptera of the Baltic amber. I. Ascalaphidae, Nymphidae, and Psychopsidae. Psyche, 77: 147180.CrossRefGoogle Scholar
Makarkin, V.N. 1990a. Baissoleon cretaceus gen. et sp. nov. Fossil Neuroptera from the Lower Cretaceous of east Siberia. 2. Nymphitidae. Annales de la Societe Entomologique de France (N.S.), 26: 125126.Google Scholar
Makarkin, V.N. 1990b. Novye setchatokrylye (Neuroptera) iz verkhnego mela Azii [New lacewings (Neuroptera) from the Upper Cretaceous of Asia]. In Novosti faunistiki i sistematiki [News of faunistics and systematics]. Edited by Akimov, I.A.. Naukova Dumka, Kiev, Ukraine. Pp. 6368. [In Russian].Google Scholar
Makarkin, V.N. and Archibald, S.B. 2013. A diverse new assemblage of green lacewings (Insecta: Neuroptera: Chrysopidae) from the early Eocene Okanagan Highlands, western North America. Journal of Paleontology, 87: 123146.CrossRefGoogle Scholar
Makarkin, V.N., Archibald, S.B., and Jepson, J.E. 2019. The oldest Inocelliidae (Raphidioptera) from the Eocene of western North America. The Canadian Entomologist, 151: 521530.CrossRefGoogle Scholar
Makarkin, V.N., Heads, S.W., and Wedmann, S. 2017. Taxonomic study of the Cretaceous lacewing family Babinskaiidae (Neuroptera: Myrmeleontoidea: Nymphidoidae), with description of New Taxa. Cretaceous Research, 78: 149160.CrossRefGoogle Scholar
Makarkin, V.N. and Khramov, A.V. 2015. A new fossil species of snakeflies (Raphidioptera: Mesoraphidiidae) from the Late Cretaceous of Kazakhstan, with notes on Turonian Neuropterida. Cretaceous Research, 52: 407415.CrossRefGoogle Scholar
Makarkin, V.N., Ren, D., and Yang, Q. 2009. Two new species of Kalligrammatidae (Neuroptera) from the Jurassic of China, with comments on venational homologies. Annals of the Entomological Society of America, 102: 964969.CrossRefGoogle Scholar
Makarkin, V.N., Wedmann, S., and Heads, S.W. 2018. A systematic reappraisal of Araripeneuridae (Neuroptera), with description of new species from the Lower Cretaceous Crato Formation. Cretaceous Research, 84: 600621.CrossRefGoogle Scholar
Makarkin, V.N., Yang, Q., Peng, Y.Y., and Ren, D. 2012. A comparative overview of the Neuropteran assemblage of the Early Cretaceous Yixian Formation (China), with description of a new genus of Psychopsidae (Insecta: Neuroptera). Cretaceous Research, 35: 5768.CrossRefGoogle Scholar
Makarkin, V.N., Yang, Q., Shi, C.F., and Ren, D. 2013. The presence of the recurrent veinlet in the Middle Jurassic Nymphidae (Neuroptera) from China: a unique condition in Myrmeleontoidea. ZooKeys, 325: 120.Google Scholar
Martill, D.M. and Heimhofer, U. 2008. Stratigraphy of the Crato Formation. In The Crato Fossil Beds of Brazil. Window into an ancient world. Edited by Martill, D.M., Bechly, G., and Loveridge, R.F.. Cambridge University Press, Cambridge, United Kingdom. Pp. 2543.Google Scholar
Martins-Neto, R.G. 2005. New Neuroptera from Crato Formation, Lower Cretaceous, Araripe Basin, Northeast Brazil. Gaea, 1: 510.Google Scholar
Masner, L. 1993. Superfamily Proctotrupoidea. In Hymenoptera of the world: an identification guide to families. Edited by Goulet, H. and Huber, J.T.. Centre for Land and Biological Resources Research, Agriculture Canada, Ottawa, Ontario, Canada. Pp. 537557.Google Scholar
Menon, F., Martins-Neto, R.G., and Martill, D.M. 2005. A new Lower Cretaceous nymphid (Insecta, Neuroptera, Nymphidae) from the Crato Formation of Brazil. Gaea, 1: 1115.Google Scholar
Moss, P.T., Greenwood, D.R., and Archibald, S.B. 2005. Regional and local vegetation community dynamics of the Eocene Okanagan Highlands (British Columbia-Washington State) from palynology. Canadian Journal of Earth Sciences, 42: 187204.CrossRefGoogle Scholar
Moss, P.T., Smith, R.Y., and Greenwood, D.R. 2016. A window into mid-latitudinal early Eocene environmental variability: a high-resolution palynological analysis of the Falkland site, Okanagan Highlands, British Columbia, Canada. Canadian Journal of Earth Sciences, 53: 605613.CrossRefGoogle Scholar
Myskowiak, J., Escuillié, F., and Nel, A. 2015. A new Osmylidae (Insecta, Neuroptera) from the Lower Cretaceous Crato Formation in Brazil. Cretaceous Research, 54: 2733.CrossRefGoogle Scholar
Myskowiak, J., Huang, D., Azar, D., Cai, C.Y., Garrouste, R., and Nel, A. 2016. New lacewings (Insecta, Neuroptera, Osmylidae, Nymphidae) from the Lower Cretaceous Burmese amber and Crato Formation in Brazil. Cretaceous Research, 59: 214227.CrossRefGoogle Scholar
New, T.R. 1982a. A revision of the Australian Nymphidae (Insecta: Neuroptera). Australian Journal of Zoology, 29: 707750.CrossRefGoogle Scholar
New, T.R. 1982b. The larva of Nymphes Leach (Neuroptera, Nymphidae). Neuroptera International, 2: 7984.Google Scholar
New, T.R. 1983. Some early stages of Osmylops (Neuroptera: Nymphidae). Systematic Entomology, 8: 121126.Google Scholar
New, T.R. 1984. Intergeneric relationships in recent Nymphidae.In Progress in world’s Neuropterology. Proceedings of the 1st International Symposium on Neuropterology. Edited by Gepp, J., Aspöck, H. and Hölzel, H.. Privately printed, Graz, Austria. Pp. 125131.Google Scholar
New, T.R. 1985. A second species of Nymphidae (Neuroptera) from Papua New Guinea. Neuroptera International, 3: 187189.Google Scholar
New, T.R. 1986a. A new Australian species of Nymphidae (Neuroptera). Journal of the Australian Entomological Society, 25: 329331.CrossRefGoogle Scholar
New, T.R. 1986b. A review of the biology of Neuroptera Planipennia. Neuroptera International, Supplemental Series, 1: 157.Google Scholar
New, T.R. 1988. Nymphidae (Insecta: Neuroptera) from New Guinea. Invertebrate Taxonomy, 1: 807815.CrossRefGoogle Scholar
New, T.R. and Lambkin, K.J. 1989. The larva of Norfolius (Neuroptera: Nymphidae). Systematic Entomology, 14: 9398.CrossRefGoogle Scholar
Oswald, J.D. 1993. Revision and cladistic analysis of the world genera of the family Hemerobiidae (Insecta: Neuroptera). Journal of the New York Entomological Society, 101: 143299.Google Scholar
Oswald, J.D. 1997. Review of the sejunctus species group of the split-footed lacewing genus Osmylops Banks (Neuroptera: Nymphidae), with remarks on the functional morphology of teminalic coupling. Australian Journal of Entomology, 36: 351358.CrossRefGoogle Scholar
Oswald, J.D. 1998. Osmylops Banks (Neuroptera: Nymphidae): generic review and revision of the armatus species group. Journal of Neuropterology, 1: 79108.Google Scholar
Panfilov, D.V. 1980. Novye predstaviteli setcharokrylykh (Neuroptera) iz yury Karatau [New representatives of lacewings (Neuroptera) from the Jurassic of Karatau]. In Iskopaemye nasekomye mezozoya [Fossil insects of the Mesozoic]. Edited by Dolin, V.G., Panfilov, D.V., Ponomarenko, A.G., and Pritykina, L.N.. Naukova Dumka, Kiev, Ukraine. Pp. 82111. [In Russian].Google Scholar
Perkovsky, E.E., Rasnitsyn, A.P., Vlaskin, A.P., and Taraschuk, M.V. 2007. A comparative analysis of the Baltic and Rovno amber arthropod faunas: representative samples. African Invertebrates, 48: 229245.Google Scholar
Pictet-Baraban, F.J. and Hagen, H.A. 1856. Die im Bernstein befindlichen Neuropteren der Vorwelt. In Die im Bernstein befindlichen organischen Reste der Vorwelt gesammelt, in Verbindung mit Mehreren bearbeitet und herausgegeben von Dr. Georg Carl Berendt. Band 2, Abteilung 2. Edited by Berendt, G.C.. Nicolaische Buchhandlung, Berlin, Germany. Pp. 82111.Google Scholar
Ponomarenko, A.G. 1992. Neuroptera (Insecta) from the Lower Cretaceous of Transbaikalia. Paleontologicheskii Zhurnal, 1992(3): 4350. [In Russian; English translation: Paleontological Journal, 26(3): 56–66].Google Scholar
Rasnitsyn, A.P. and Zherikhin, V.V. 2002. 4. Appendix: alphabetic list of selected insect fossil sites. 4.1. Impression fossils. In History of insects. Edited by Rasnitsyn, A.P. and Quicke, D.L.J.. Kluwer Academic Publishers, Dordrecht, The Netherlands. Pp. 437444.CrossRefGoogle Scholar
Ren, D. and Engel, M.S. 2007. A split-footed lacewing and two epiosmylines from the Jurassic of China (Neuroptera). Annales Zoologici, 57: 211219.Google Scholar
Rice, H.M.A. 1959. Fossil Bibionidae (Diptera) from British Columbia. Geological Survey of Canada Bulletin, 55: 137.Google Scholar
Schweigert, G. 2007. Ammonite biostratigraphy as a tool for dating Upper Jurassic lithographic limestones from South Germany – first results and open questions. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 245: 117125.CrossRefGoogle Scholar
Shi, C.F., Makarkin, V.N., Yang, Q., Archibald, S.B., and Ren, D. 2013. New species of Nymphites Haase (Neuroptera: Nymphidae) from the Middle Jurassic of China, with a redescription of the type species of the genus. Zootaxa, 3700: 393410.CrossRefGoogle ScholarPubMed
Shi, C.F., Winterton, S.L., and Ren, D. 2015. Phylogeny of split-footed lacewings (Neuroptera, Nymphidae), with descriptions of new Cretaceous fossil species from China. Cladistics, 31: 455490.CrossRefGoogle Scholar
Smith, R.Y., Basinger, J.F., and Greenwood, D.R. 2009. Depositional setting, fossil flora and paleoenvironment of the early Eocene Falkland site, Okanagan Highlands, British Columbia. Canadian Journal of Earth Sciences, 46: 811822.CrossRefGoogle Scholar
Smith, R.Y., Basinger, J.F., and Greenwood, D.R. 2012. Early Eocene plant diversity and dynamics in the Falkland flora, Okanagan Highlands, British Columbia, Canada. Palaeobiodiversity and Palaeoenvironments, 92: 309328.CrossRefGoogle Scholar
Smith, R.Y., Greenwood, D.R., and Basinger, J.F. 2010. Estimating paleoatmospheric pCO2 during the Early Eocene climatic optimum from stomatal frequency of Ginkgo, Okanagan Highlands, British Columbia, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology, 293: 120131.CrossRefGoogle Scholar
Šobotník, J. and Dahlsjö, C.A.L. 2017. Isoptera [online]. Reference Module in Life Sciences. Available from http://doi.org/10.1016/B978-0-12-809633-8.02256-1 [accessed 4 February 2020].CrossRefGoogle Scholar
Tillyard, R.J. 1926. The insects of Australia and New Zealand. Angus & Robertson, Sydney, Australia.Google Scholar
Weidner, H. 1958. Einige interessante Insektenlarven aus der Bernsteininklusen-Sammlung des Geologischen Staatsinstituts Hamburg (Odonata, Coleoptera, Megaloptera, Planipennia). Mitteilung aus dem Geologischen Staatsinstitut in Hamburg, 27: 5068.Google Scholar
Westwood, J.O. 1854. Contributions to fossil entomology. Quarterly Journal of the Geological Society of London, 10: 378396.CrossRefGoogle Scholar
Weyenbergh, H. 1869. Sur les insectes fossiles du calcaire lithographique de la Bavière, qui se trouvent au Musée Teyler. Archives du Musée Teyler, 2: 247294.Google Scholar
Wilson, M.V.H. 1977. New records of insect families from the freshwater Middle Eocene of British Columbia. Canadian Journal of Earth Sciences, 14: 11391155.CrossRefGoogle Scholar
Wolfe, J.A., Gregory-Wodzicki, K.M., Molnar, P., and Mustoe, G. 2003. Rapid uplift and then collapse in the Eocene of the Okanagan? Evidence from paleobotany [CD-ROM]. In Geological Association of Canada–Mineralogical Association of Canada – Society of Economic Geologists, Joint Annual Meeting, Vancouver, Abstracts. Geological Association of Canada – Mineralogical Association of Canada – Society of Economic Geologists, Vancouver, British Columbia, Canada.Google Scholar