Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-09T06:32:13.615Z Has data issue: false hasContentIssue false

NEW AMBER DEPOSIT PROVIDES EVIDENCE OF EARLY PALEOGENE EXTINCTIONS, PALEOCLIMATES, AND PAST DISTRIBUTIONS

Published online by Cambridge University Press:  31 May 2012

George Poinar Jr.
Affiliation:
Department of Entomology, Oregon State University, Corvallis, Oregon, USA 97331
Bruce Archibald
Affiliation:
Department of Biological Sciences, Simon Fraser University, Burnaby, British Colombia, Canada V5A 1S6
Alex Brown
Affiliation:
629 Euclid Avenue, Berkeley, California, USA 94708

Abstract

A large, previously unstudied amber deposit in British Columbia dating from the Early to Middle Eocene (50−55 Ma) provides a noteworthy new source of terrestrial invertebrates and other life forms. This deposit contains what are likely the earliest unequivocal ants (members of the family Formicidae), including extinct representatives of Technomyrmex Mayr 1872, Leptothorax Mayr 1855, and Dolichoderus Lund 1831. Discovering Technomyrmex and a corydiinid cockroach, both of which are currently restricted to tropical regions, confirms earlier evidence of warm paleoclimates and past biogeographic distributions in the early Paleogene. Chemical analysis of the amber indicates that the source tree was an araucarian belonging to or near the genus Agathis Salisbury 1807, and demonstrates that this genus survived into the Tertiary in the Northern Hemisphere, since previous records revealed Agathis as a component only of the Cretaceous forests in North America. Comparing the Hat Creek fossil assemblages in this deposit with those from the well-studied western Canadian Late Cretaceous amber deposits offers a unique opportunity to study extinction and speciation events on both sides of the Cretaceous–Tertiary boundary.

Résumé

En Colombie-Britannique, un important gisement d’ambre encore jamais examiné et remontant au début-milieu de l’Eocène (50–55 Ma) a mis en lumière une nouvelle source d’invertébrés terrestres et d’autres formes d’organismes. Le gisement contient probablement les plus anciennes vraies fourmis (membres de la famille des Formicidae), dont des représentants maintenant disparus des genres Technomyrmex Mayr 1872, Leptothorax Mayr 1855 et Dolichoderus Lund 1831. La découverte de Technomyrmex et d’une blatte corydiinide, tous deux maintenant restreints aux régions tropicales, confirme l’existence de paléoclimats chauds et met en lumière les répartitions biogéographiques telles qu’elles étaient au début du Paléogène. Une analyse chimique a révélé que l’arbre à l’origine de l’ambre est un araucarien appartenant au genre Agathis Salisbury 1807 ou à un genre apparenté, et prouve que le genre a survécu jusqu’au Tertiaire dans l’hémisphère nord, puisque des données antérieures ont démontré qu’Agathis n’existait que dans les forêts du Crétacé en Amérique du Nord. Par comparaison des associations de fossiles de Hat Creek dans ce gisement à ceux des gisements bien connus de l’ouest canadien à la fin du Crétacé nous sommes en mesure d’étudier l’histoire des extinctions et spéciations de part et d’autre de la démarcation Crétacé–Tertiaire.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agosti, D., Grimaldi, D., Carpenter, J.M. 1998. Oldest known ant fossils discovered. Nature (London) 391: 447.CrossRefGoogle Scholar
Atkinson, T.H., Koehler, P.G., Patterson, R.S. 1991. Catalog and atlas of the cockroaches (Dictyoptera) of North America north of Mexico. Miscellaneous Publications of the Entomological Association of America 78.Google Scholar
Baroni Urbani, C. 1989. Phylogeny and behavioral evolution in ants. Ethology, Ecology and Evolution 1: 137–68.Google Scholar
Bell, W.A. 1957. Flora of the Upper Cretaceous Nanaimo Group, Vancouver Island. Geological Survey of Canada Memoir 293.Google Scholar
Brandao, C.R.F., Baroni Urbani, C., Wagensberg, J., Yamamoto, C.I. 1999. New Technomyrmex in Dominican amber (Hymenoptera: Formicidae), with a reappraisal of the Dolichoderinae phylogeny. Entomologica Scandinavica. In press.Google Scholar
Carpenter, F.M. 1929. A fossil ant from the Lower Eocene (Wilcox) of Tennessee. Journal of the Washington Academy of Science 19: 300301.Google Scholar
Carpenter, F.M. 1930. The fossil ants of North America. Bulletin of the Museum of Comparative Zoology 70: 166.Google Scholar
Carpenter, F.M. 1992. Superclass Hexapoda. pp. 1655in Kaesler, R.L. (Ed), Treatise on invertebrate paleontology: Arthropoda 4 (4). The Geological Society of America, Boulder, CO, and the University of Kansas, Lawrence, KS.Google Scholar
Cockerell, T.D.A. 1921. Some Eocene insects from Colorado and Wyoming. Proceedings of the United States National Museum 59: 2939.CrossRefGoogle Scholar
Church, B.N. 1975. Geology of the Hat Field Creek Coal Basin. pp. 99118in Fieldwork 1975. British Columbia Ministry of Energy, Mines and Petroleum Resources Paper 921/13E.Google Scholar
Church, B.N. 1981. Further studies of the Hat Creek coal deposit. pp. 7377in Geological Fieldwork 1980. British Columbia Ministry of Energy, Mines and Petroleum Resources Paper 1981–1.Google Scholar
Church, B.N., Matheson, A., Hora, Z.D. 1979. Combustion metamorphism in the Hat Creek area, British Columbia. Canadian Journal of Earth Sciences 16: 1882–87.CrossRefGoogle Scholar
Dlussky, G.M. 1975. Formicidae. pp. 115121in Rasnitsyn, A.P. (Ed.), Hymenoptera Apocrita of the Mesozoic. Transactions of the Paleontological Institute of the Academy of Sciences of the USSR 147. [In Russian.]Google Scholar
Grand, L. 1984. Paleontology of the Green River Formation, with a review of the fish fauna. 2nd ed. Bulletin of the Geological Survey of Wyoming 63: 1333.Google Scholar
Grimaldi, D., Agosti, D., Carpenter, J.M. 1997. New and rediscovered primitive ants (Hymenoptera: Formicidae) in Cretaceous amber from New Jersey, and their phylogenetic relationships. American Museum Novitates 3208.Google Scholar
Hong, Y-C, Yang, T-C, Wang, S-T, Wang, S-E, Li, Y-K, Sun, M-R, Sun, H-C, Tu, N-C. 1974. Stratigraphy and paleontology of Fushin Coal field, Liaoning Province. Acta Geologica Sinica 2: 113–49.Google Scholar
Hopkins, W.S. Jr 1980. Palynology of the 75–106 B.C. Hydro core hole, Hat Creek Coal Basin, British Columbia. Geological Survey of Canada Open File 547.Google Scholar
Johnston, J.E. 1993. Insects, spiders, and plants from the Tallahatta Formation (Middle Eocene) in Benton County, Mississippi. Mississippi Geology 14: 7182.Google Scholar
Kevan, DK McE. 1979. Dictuoptera. pp. 314–16 in Danks, H.V. (Ed.), Canada and its insect fauna. Memoirs of the Entomological Society of Canada 108.Google Scholar
Lambert, J.B., Frye, J.S., Poinar, G.O. Jr. 1990. Analysis of North American amber by carbon-13 NMR spectroscopy. Geoarchaeology 5: 4352.CrossRefGoogle Scholar
Lambert, J.B., Johnson, S.C., Poinar, G.O. Jr 1996. Nuclear magnetic resonance characterization of Cretaceous amber. Archaeometry 38: 325–35.CrossRefGoogle Scholar
Lambert, J.B., Johnson, S.C., Poinar, G.O. Jr, Frye, J.S. 1994. Recent and fossil resins from New Zealand and Australia. Geoarchaeology 8: 141–55.CrossRefGoogle Scholar
Lutz, H. 1986. Eine neue Unterfamilie der Formicidae (Insecta: Hymenoptera) aus dem mittel-eozanen Olschiefer der “Grube Messel” bei Darmstadt (Deutschland, S- Hessen). Senckenbergiana Lethaea 67: 177218.Google Scholar
McAlpine, J.F., Martin, J.E.H. 1966. Canadian amber — a paleontological treasure chest. The Canadian Entomologist 101: 818–39.Google Scholar
Pike, E.M. 1995. Amber taphonomy and the Grassy Lake, Alberta, Amber fauna. Ph.D. thesis, The University of Calgary, Calgary, AB.Google Scholar
Poinar, G.O. Jr 1992. Life in amber. Stanford University Press, Stanford, CA.CrossRefGoogle Scholar
Rice, H.M.A. 1947. Geology and mineral deposits of the Princeton map-area, British Columbia. Geological Survey of Canada Memoir 243.Google Scholar
Verschoor, K van Romondt. 1974. Paleobotany of the Tertiary (early Middle Eocene) McAbee Beds, British Columbia. M.Sc. thesis, The University of Calgary, Calgary, AB.Google Scholar
Wheeler, W.M. 1914. The ants of the Baltic amber. Schrifen Physikalisch- Okonomischen Gesellschaft zu Konigsberg 55: 1142.Google Scholar
Whitmore, T.C. 1980. A monograph of Agathis. Plant Systematics and Evolution 135: 4469.CrossRefGoogle Scholar
Wilson, E.O. 1985. Ants from the Cretaceous and Eocene amber of North America. Psyche 92: 205–16.CrossRefGoogle Scholar
Wilson, E.O., Carpenter, F.M., Brown, W.L. 1967. The first Mesozoic ants, with the description of a new subfamily. Psyche 74: 119.CrossRefGoogle Scholar
Wilson, M.V.H. 1996. Insects near Eocene lakes of the Interior. pp. 225–33 in Ludvigsen, R. (Ed.), Life in stone: a natural history of British Columbia's fossils. University of British Columbia Press, Vancouver, BC.CrossRefGoogle Scholar