Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T23:59:51.434Z Has data issue: false hasContentIssue false

MORTALITY, FEEDING INHIBITION, AND RECOVERY OF SPRUCE BUDWORM (LEPIDOPTERA: TORTRICIDAE) LARVAE FOLLOWING AERIAL APPLICATION OF A HIGH-POTENCY FORMULATION OF BACILLUS THURINGIENSIS SUBSP. KURSTAKI

Published online by Cambridge University Press:  31 May 2012

Kees van Frankenhuyzen*
Affiliation:
Great Lakes Forestry Centre, Canadian Forest Service, Natural Resources Canada, P.O. Box 490, Sault Ste. Marie, Ontario, Canada P6A 5M7
Carl Nystrom
Affiliation:
Great Lakes Forestry Centre, Canadian Forest Service, Natural Resources Canada, P.O. Box 490, Sault Ste. Marie, Ontario, Canada P6A 5M7
John Dedes
Affiliation:
Great Lakes Forestry Centre, Canadian Forest Service, Natural Resources Canada, P.O. Box 490, Sault Ste. Marie, Ontario, Canada P6A 5M7
Vern Seligy
Affiliation:
Environmental and Occupational Toxicology Division, Environmental Health Centre, Health Canada, Tunney's Pasture, Ottawa, Ontario, Canada K1A 0L2
*
1 Author to whom all correspondence should be addressed (E-mail: [email protected]).
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A larval population of spruce budworm, Choristoneura fumiferana (Clemens), was monitored for 5 d following aerial application of a commercial formulation of Bacillus thuringiensis Berliner subsp. kurstaki to investigate dose acquisition and expression (larval mortality, recovery, feeding, and growth) in relation to spray deposition and persistence of spray deposits. The main objective was to test if previous laboratory observations on how B. thuringiensis affects feeding and dose ingestion by spruce budworm larvae hold true under field conditions. About 40% of the treated population ingested a lethal dose within 1 d after spray application. Lethally dosed larvae died without further feeding upon transfer from treated foliage to (untreated) artificial diet. Resumption of feeding by larvae that survived the treatment was delayed relative to larvae from the control population during 3 d following spray application; during that time, normal feeding activity and larval weight gain were suppressed. Inhibited feeding by survivors appeared to prevent further dose uptake because the proportion of lethally dosed larvae in daily collections did not increase despite significant residual spray deposits in budworm feeding sites. Restoration of "normal" recovery times by the fourth day coincided with a 65–85% reduction in persistence of the pathogen on the foliage and did not result in further lethal dose acquisition, as treatment-induced mortality dropped to about 20% on the 4th and 5th days. The observations are consistent with previous laboratory observations of how B. thuringiensis affects larval feeding and with the hypothesis that feeding inhibition may be a limiting factor in the acquisition of a lethal dose.

Résumé

Une population de larves de la Tordeuse des bourgeons de l’épinette, Choristoneura fumiferana (Clemens), a été suivie pendant 5 jours après arrosage d’une préparation commerciale de Bacillus thuringienesis Berliner ssp. kurstaki afin de déterminer la fraction de la dose qui a été absorbée et ses effets (mortalité, récupération, alimentation et croissance) en relation avec la quantité de la préparation qui s’est déposée au sol et la persistance de ces résidus. Le but ultime de l’exercice était de vérifier si les observations antérieures en laboratoire des effets de B. thuringiensis sur l’alimentation et sur l’ingestion du bacille se produisent aussi sur le terrain. Environ 40% des larves traitées ont ingéré une dose létale en moins d’une journée. Les larves qui ont ingurgité une dose létale ont été transférées du feuillage traité à un régime artificiel (non traité) mais elles sont mortes sans chercher à se nourrir de nouveau. Le retour à l’alimentation chez les larves qui ont survécu au traitement s’est fait tardivement par rapport à la population témoin durant les 3 jours qui ont suivi l’arrosage; pendant ce temps, l’activité alimentaire normale et l’augmentation de la masse étaient inhibées. L’alimentation ainsi inhibée chez les larves survivantes semble les avoir empêchées d’ingurgiter davantage du produit puisque la proportion de larves tuées n’a pas augmenté dans les récoles quotidiennes, en dépit de la présence de résidus importants du produit aux sites d’alimentation des larves. Le retour à un temps « normal » de récupération le 4e jour coïncidait avec une réduction de 65–85% de la persistance du pathogène sur le feuillage et nous n’avons pas observé de nouvelle phase d’absorption létale à partir du moment ou la mortalité reliée au traitement est baissée à environ 20% le 4e et le 5e jours. Ces observations sont comparables aux résultat obtenus en laboratoire sur les effets de B. thuringiensis sur l’alimentation des larves et sont conformes à l’hypothèse selon laquelle l’inhibition de l’alimentation peut empêcher l’absorption d’une dose létale.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2000

References

Angus, T.A., Heimpel, A.M. 1959. Inhibition of feeding and blood pH changes in lepidopterous larvae infected with crystal-forming bacteria. The Canadian Entomologist 91: 352–8CrossRefGoogle Scholar
Brown, M.B., Forsythe, A.B. 1974 a. The small sample behaviour of some statistics which test the equality of several means. Technometrics 16: 129–32CrossRefGoogle Scholar
Brown, M.B., Forsythe, A.B. 1974 b. Robust test for the equality of variances. Journal of the American Statistical Association 69: 364–7CrossRefGoogle Scholar
Carter, N. 1990. Protection spraying against spruce budworm in New Brunswick, 1989. Fredericton: New Brunswick Department of Natural Resources and EnergyGoogle Scholar
Cooke, B.J., Régnière, J. 1996. An object-oriented, process-based stochastic simulation model of Bacillus thuringiensis efficacy against spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). International Journal of Pest Management 42: 291306CrossRefGoogle Scholar
Cooke, B.J., Régnière, J. 1999. Predictability and measurability of Bacillus thuringiensis efficacy against spruce budworm (Lepidoptera: Tortricidae). Environmental Entomology 28: 711–21CrossRefGoogle Scholar
Day, R.W., Quinn, G.P. 1989. Comparisons of treatments after an analysis of variance in ecology. Ecological Monographs 59: 433–93CrossRefGoogle Scholar
Dixon, W.J. 1990. BMDP statistical software manual. Vol. 1. Berkeley: University of California PressGoogle Scholar
Farrar, R.R., Barbour, J.D., Kennedy, G.G. 1989. Quantifying food consumption and growth in insects. Annals of the Entomological Society of America 82: 593–8CrossRefGoogle Scholar
Fast, P.G., Régnière, J. 1984. Effect of exposure time to Bacillus thuringiensis on mortality and recovery of the spruce budworm (Lepidoptera: Tortricidae). The Canadian Entomologist 116: 123–30CrossRefGoogle Scholar
Fleming, R.A., van Frankenhuyzen, K. 1992. Forecasting the efficacy of operational Bacillus thuringiensis applications against spruce budworm, Choristoneura fumiferana Clemens (Lepidoptera: Tortricidae), using dose ingestion data: initial models. The Canadian Entomologist 124: 1101–13CrossRefGoogle Scholar
Grisdale, D.G. 1970. An improved method for rearing large numbers of spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae). The Canadian Entomologist 102: 1111–7CrossRefGoogle Scholar
Holmes, S.B. 1998. Reproduction and nest behaviour of Tennessee warblers in forests treated with Lepidopera-specific insecticides. Journal of Applied Ecology 35: 185–94CrossRefGoogle Scholar
Kloft, W.J. 1984. Entomology. pp 51103in L'Annunciata, M.F., Legg, J.O. (Eds.), Isotopes and radiation in agricultural sciences, Vol. 2. Toronto: Academic PressGoogle Scholar
Morris, O.N. 1983. Protection of Bacillus thuringiensis from inactivation by sunlight. The Canadian Entomologist 115: 1215–27CrossRefGoogle Scholar
Nealis, V.G., van Frankenhuyzen, K. 1990. Interactions between Bacillus thuringiensis and Apenteles fumiferanae Vier. (Hymenoptera: Braconidae), a parasitoid of the spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae). The Canadian Entomologist 122: 585–94CrossRefGoogle Scholar
Nealis, V.G., van Frankenhuyzen, K., Cadogan, B.L. 1992. Conservation of spruce budworm parasitoids following application of Bacillus thuringiensis var. kurstaki Berliner. The Canadian Entomologist 124: 1085–92CrossRefGoogle Scholar
Payne, N.J., van Frankenhuyzen, K. 1995. Effect of spray droplet size and density on efficacy of Bacillus thuringiensis Berliner against the spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae). The Canadian Entomologist 127: 1523CrossRefGoogle Scholar
Raubenheimer, D., Simpson, S.J. 1992. Analysis of covariance: an alternative to nutritional indices. Entomologia experimentalis et applicata 62: 221–31CrossRefGoogle Scholar
Régnière, J., Cooke, B.J. 1998. Validation of a process oriented model of Bacillus thuringiensis variety kurstaki efficacy against spruce budworm (Lepidoptera: Tortricidae). Environmental Entomology 27: 801–11CrossRefGoogle Scholar
Seligy, V.L., Rancourt, J.M. 1999 Antibiotic MIC/MBC analysis of Bacillus-based commercial insecticides: use of bioreduction and DNA-based assays. Journal of Industrial Microbiology & Biotechnology 22: 565–74CrossRefGoogle ScholarPubMed
Seligy, V.L., Beggs, R.W., Rancourt, J.M., Tayabali, A.F. 1997. Quantitative bioreduction assays for calibrating spore content and viability of commercial Bacillus thuringiensis insecticides. Journal of Industrial Microbiology & Biotechnology 18: 370–8CrossRefGoogle Scholar
Stelzer, M.J., Beckwith, R.C. 1988. Comparison of two isolates of Bacillus thuringiensis in a field test on western spruce budworm (Lepidoptera: Tortricidae). Journal of Economic Entomology 81: 880–6CrossRefGoogle Scholar
van Frankenhuyzen, K. 1990. Effect of temperature and exposure time on toxicity of Bacillus thuringiensis spray deposits to spruce budworm, Choristoneura fumiferana Clemens (Lepidoptera: Tortricidae). The Canadian Entomologist 122: 6975CrossRefGoogle Scholar
van Frankenhuyzen, K., Nystrom, C.W. 1987. Effect of temperature on mortality and recovery of spruce budworm (Lepidoptera: Tortricidae) exposed to Bacillus thuringiensis Berliner. The Canadian Entomologist 119: 941–54CrossRefGoogle Scholar
van Frankenhuyzen, K., Nystrom, C.W. 1989. Residual toxicity of a high-potency formulation of Bacillus thuringiensis to spruce budworm (Lepidoptera: Tortricidae). Journal of Economic Entomology 82: 868–72CrossRefGoogle Scholar
van Frankenhuyzen, K., Nystrom, C.W. 1998. The Bacillus thuringiensis toxin specificity database. http://www.glfc.forestry.ca/Bacillus/Bt_HomePage/netintro99.htm (October 1999)Google Scholar
van Frankenhuyzen, K., Payne, N. 1993. Theoretical optimization of Bacillus thuringiensis Berliner for control of the eastern spruce budworm, Choristoneura fumiferana Clem. (Lepidoptera: Tortricidae): estimates of lethal and sublethal dose requirements, product potency, and effective droplet sizes. The Canadian Entomologist 125: 473–8CrossRefGoogle Scholar
van Frankenhuyzen, K., Gringorten, L., Dedes, J., Gauthier, D. 1997. Susceptibility of different instars of the spruce budworm (Lepidoptera: Tortricidae) to Bacillus thuringiensis var. kurstaki estimated with a droplet-feeding method. Journal of Economic Entomology 90: 560–5CrossRefGoogle Scholar