Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T11:54:22.207Z Has data issue: false hasContentIssue false

Monitoring and detection of the swede midge (Diptera: Cecidomyiidae)

Published online by Cambridge University Press:  02 April 2012

Rebecca H. Hallett*
Affiliation:
Department of Environmental Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
Sheila A. Goodfellow
Affiliation:
Department of Environmental Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
James D. Heal
Affiliation:
Department of Environmental Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
*
1Corresponding author (e-mail: [email protected]).

Abstract

In 2002, two types of light traps were compared against sticky yellow cards for efficiency and selectivity in capturing adult swede midge Contarinia nasturtii (Kieffer) (Diptera: Cecidomyiidae). Incandescent light traps were more efficient at capturing swede midge than were sticky traps. Incandescent light traps were more selective than blacklight traps and required less time for processing of samples and identification of captured midges. Emergence (2003 and 2004) and pheromone (2004) traps were used to assess swede midge population dynamics. Captures from emergence traps indicate up to five overlapping emergence events for swede midge each year. Emergence traps captured swede midge earlier in the season than pheromone traps, but pheromone-trap captures continued later in the season than those in emergence traps. Pheromone traps are small and portable, easy to maintain, and capture significantly more swede midge than emergence traps.

Résumé

En 2002, nous avons comparé l'efficacité et la sélectivité de deux types de pièges lumineux à celles des pièges à carte collante jaune pour la capture des cécidomyies du chou-fleur adultes Contarinia nasturtii (Kieffer) (Diptera : Cecidomyiidae). Les pièges à lumière incandescente capturent plus efficacement la cécidomyie du chou-fleur que les pièges collants. Les pièges à lumière incandescente sont plus sélectifs que les pièges à lumière ultraviolette; ils requièrent moins de temps pour le traitement des échantillons et l'identification des cécidomyies capturées. Nous avons utilisé des pièges d'émergence (2003 et 2004) et des pièges à phéromones (2004) pour déterminer la dynamique de population des cécidomyies. Les captures dans les pièges d'émergence indiquent l'existence de jusqu'à cinq épisodes d'émergence qui se chevauchent chaque année chez les cécidomyies du chou-fleur. Les pièges d'émergence capturent les cécidomyies du chou-fleur plus tôt dans la saison que les pièges à phéromones, mais les captures au pièges à phéromones se prolongent plus tard dans la saison que celles faites aux pièges d'émergence. Les pièges à phéromones sont petits, portatifs et faciles à entretenir et ils capturent significativement plus de cécidomyies du chou-fleur que les pièges d'émergence.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ali, A., Ceretti, G., Barbato, L., Marchese, G., D'Andrea, F., and Stanley, B. 1994. Attraction of Chironomus salinarius (Diptera: Chironomidae) to artificial light on an island in the saltwater lagoon of Venice, Italy. Journal of the American Mosquito Control Association, 10: 3541.Google Scholar
Barnes, H.F. 1946. Gall midges of economic importance. Vol. 1. Gall midges of root and vegetable crops. Crosby Lockwood and Son Ltd., London, United Kingdom.Google Scholar
Biron, D., Langlet, X., Boivin, G., and Brunel, E. 1998. Expression of early and late-emerging phenotypes in both diapausing and non-diapausing Delia radicum L. pupae. Entomologia Experimentalis et Applicata, 87: 119124.CrossRefGoogle Scholar
Bowley, S.R. 1999. A hitchhiker's guide to statistics in plant biology. Any Old Subject Books, Guelph, Ontario.Google Scholar
Bracken, G.K. 1988. Seasonal occurrence and infestation potential of cabbage maggot, Delia radicum (L.) (Diptera: Anthomyiidae), attacking rutabaga in Manitoba as determined by captures of females in water traps. The Canadian Entomologist, 120: 609614.Google Scholar
Brinson, F.J., Hagan, D.V., Comer, J.A., and Strohlein, D.A. 1992. Seasonal abundance of Lutziomyia shannoni (Diptera: Psychodidae) on Ossabaw Island, Georgia. Journal of Medical Entomology, 29: 178182.Google Scholar
Canadian Food Inspection Agency. 2002. Plant health risk assessment: Contarinia nasturtii (Kieffer), the swede midge. PHPD Request: 2002–04; File No. 31403. Plant Health Risk Assessment Unit, Canadian Food Inspection Agency, Nepean, Ontario.Google Scholar
Dry, F.W. 1915. An attempt to measure the local and seasonal abundance of the swede midge in parts of Yorkshire over the years 1912 to 1914. The Annals of Applied Biology, 2: 81108.Google Scholar
Finch, S., and Collier, R.H. 1983. Emergence of flies from overwintering populations of cabbage root fly pupae. Ecological Entomology, 8: 2936.CrossRefGoogle Scholar
Finch, S., Collier, R.H., and Skinner, G. 1986. Local population differences in emergence of cabbage root flies from south-west Lancashire: implications for pest forecasting and population divergence. Ecological Entomology, 11: 139145.CrossRefGoogle Scholar
Gagné, R.J. 1981. Cecidomyiidae. In Manual of Nearctic Diptera. Vol. 1. Monograph No. 27. Edited by McAlpine, J.F., Peterson, B.V., Shewell, G.E., Teskey, H.J., Vockeroth, J.R., and Wood, D.M.. Research Branch, Agriculture Canada, Ottawa, Ontario. pp. 257292.Google Scholar
Hallett, R.H., and Heal, J.D. 2001. First Nearctic record of the swede midge (Diptera: Cecidomyiidae), a pest of cruciferous crops from Europe. The Canadian Entomologist, 133: 713715.Google Scholar
Harris, K.M. 1966. Gall midge genera of economic importance (Diptera: Cecidomyiidae). Part I. Introduction and subfamily Cecidomyiinae; supertribe Cecidomyiidi. Transactions of the Royal Entomological Society of London, 118(10): 313358.CrossRefGoogle Scholar
Hill, D.S. 1987. Agricultural insect pests of temperate regions and their control. Cambridge University Press, Cambridge, United Kingdom.Google Scholar
Hillbur, Y., Celander, R., Baur, R., Rauscher, S., Haftmann, J., Franke, S., and Francke, W. 2005. Identification of the sex pheromone of the swede midge, Contarinia nasturtii. Journal of Chemical Ecology, 31: 18071828.CrossRefGoogle ScholarPubMed
Hutchins, S.H. 1994. Techniques for sampling arthropods in integrated pest management. In Handbook of sampling methods for arthropods in agriculture. Edited by Pedigo, L.P. and Buntin, G.D.. CRC Press, Boca Raton, Florida. pp. 7398.Google Scholar
Janousek, T.E., and Olson, J.K. 1994. Effect of lunar eclipse on the flight activity of mosquitoes in the upper Gulf coast of Texas. Journal of the American Mosquito Control Association, 10: 222224.Google ScholarPubMed
Kiss, M., Ekk, I., Toth, G., Szabo, S., and Nowinsky, L. 1981. Common effects of geomagnetism and change of moon phases on light-trap catches of fall webworm moths (Hyphantria cunea Drury). Zeitschrift für angewandte Entomologie, 91: 403411.Google Scholar
Marshall, S.A., and Cui, Y.S. 2005. Systematics of Robustagramma, a new genus of New World Sphaeroceridae (Diptera). Zootaxa, 1026: 1122.Google Scholar
Nabli, H., Bailey, W.C., and Necibi, S. 1999. Beneficial insect attraction to light traps with different wavelengths. Biological Control (Theory and Applications in Pest Management), 16: 185188.CrossRefGoogle Scholar
Pedigo, L. 2002. Entomology and pest management. 4th ed. Prentice Hall, Englewood Cliffs, New Jersey.Google Scholar
Pickens, L.G., and Thimijan, R.W. 1986. Design parameters that affect the performance of UV-emitting traps in attracting house flies (Diptera: Muscidae). Journal of Economic Entomology, 79: 10031009.CrossRefGoogle ScholarPubMed
Readshaw, J.L. 1961. The biology and ecology of the swede midge, Contarinia nasturtii (Kieffer) (Diptera; Cecidomyiidae). Ph.D. thesis, University of Durham, Durham, United Kingdom.Google Scholar
Roberts, A.E., Syms, P.R., and Goodman, L.J. 1992. Intensity and spectral emission as factors affecting the efficacy of an insect electrocutor trap towards the house-fly. Entomologia Experimentalis et Applicata, 64: 259268.CrossRefGoogle Scholar
Rogerson, J.P. 1963. Swede midge on two Northumberland farms, 1959–61. Plant Pathology, 12: 161171.CrossRefGoogle Scholar
Rygg, T.D., and Braekke, H.P. 1980. Swede midge (Contarinia nasturtii Kieffer) (Diptera, Cecidomyiade): investigations on biology, symptoms of attack and effects on yield. Meldinger fra Norges landbrukshøgskole, 59: 19.Google Scholar
SAS Institute Inc. 2001. The SAS® system for Windows. Release 8.02. SAS Institute Inc., Cary, North Carolina.Google Scholar
Taylor, T.H. 1912. Cabbage-top in swedes. Rep. No. 82, Yorkshire Council for Agric. Educ., University of Leeds, Leeds, United Kingdom.Google Scholar
Turnock, W.J., and Boivin, G. 1997. Inter- and intra-population differences in the effects of temperature on postdiapause development of Delia radicum. Entomologia Experimentalis et Applicata, 84: 255265.CrossRefGoogle Scholar
United States Department of Agriculture. 2002. Canada – Agricultural situation – plant health measures to limit spread of swede midge. Global Agriculture Information Network (GAIN) Rep. CA2068, Foreign Agricultural Service, United States Department of Agriculture.Google Scholar
Vaishampayan, S.M., and Verma, R. 1983. Effect of moon phase and lunar periodicity on the light trap catches of gram pod borer moths Heliothis armigera (Hubner). In Insect interrelations in forest and agro ecosystems. Edited by Sen-Sarma, P.K., Kulshrestha, S.K., and Sangal, S.K.. Jugal Kishore & Co., Dehra Dun, India. pp. 123130.Google Scholar
Walgenbach, J.F., Eckenrode, C.J., and Straub, R.W. 1993. Emergence patterns of Delia radicum (Diptera: Anthomyiidae) populations from North Carolina and New York. Environmental Entomology, 22: 559566.Google Scholar
Yela, J.L., and Holyoak, M. 1997. Effects of moonlight and meterological factors on light and bait trap catches of noctuid moths (Lepidoptera: Noctuidae). Environmental Entomology, 26: 12831290.CrossRefGoogle Scholar