Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T08:29:02.388Z Has data issue: false hasContentIssue false

Modification of the sex-pheromone communication system associated with organophosphorus-insecticide resistance in the obliquebanded leafroller (Lepidoptera: Tortricidae)

Published online by Cambridge University Press:  31 May 2012

Ashraf M. El-Sayed*
Affiliation:
Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, Vineland Station, Ontario, Canada L0R 2E0
H.M. Fraser
Affiliation:
Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, Vineland Station, Ontario, Canada L0R 2E0
R.M. Trimble
Affiliation:
Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, Vineland Station, Ontario, Canada L0R 2E0
*
1 Author to whom all correspondence should be addressed.

Abstract

The pheromone communication systems of azinphosmethyl-susceptible (susceptible) and azinphosmethyl-resistant (resistant) obliquebanded leafrollers, Choristoneura rosaceana (Harris), from the Niagara Peninsula of Ontario, were compared in the laboratory and field. The pheromone glands of resistant females contained approximately one-half as much (Z)-11-tetradecenyl acetate (Z11-14:Ac), (Z)-11-tetradecenol (Z11-14:OH), and (Z)-11-tetradecenal (Z11-14:Al) as the glands of susceptible females. A similar amount of (E)-11-tetradecenyl acetate (E11-14:Ac) was found in the glands of the two types of females. The pheromone effluvium from resistant females contained approximately one-half as much Z11-14:Ac, E11-14:Ac, Z11-14:OH, and Z11-14:Al as the effluvium from susceptible females. The onset and duration of female calling and the effect of age on calling were similar in susceptible and resistant C. rosaceana. In an apple orchard, traps baited with resistant females captured approximately one-half as many marked and released susceptible and resistant males as traps baited with susceptible females. There was no difference in the response of antennae from susceptible and resistant males to synthetic Z11-14:Ac and E11-14:Ac. The antennae of resistant males were less sensitive to Z11-14:OH and Z11-14:Al than the antennae of susceptible males. In a flight tunnel, pheromone-gland extracts from susceptible and resistant females, and calling susceptible and resistant females, were equally attractive to both susceptible and resistant males. In an apple orchard, the rate of capture of marked and released susceptible males was greater than that of resistant males in traps baited with susceptible females, but not in traps baited with resistant females or in traps baited with synthetic pheromone. The reduced ability to locate virgin females suggests that the presence of resistant males in an apple orchard may result in a reduction in the capture of moths in pheromone-baited traps. The reduction in trap catch was likely not caused by resistant females because they were less attractive to males than susceptible females and would therefore, in theory, compete less with traps for males than susceptible females. The differences observed in the pheromone communication systems of susceptible and resistant C. rosaceana are likely pleotropic effects associated with the selection for insecticide resistance.

Résumé

Les systèmes de communications par les phéromones ont été comparés en laboratoire et en nature chez des Tordeuses à bandes obliques, Choristoneura rosaceana (Harris), de la péninsule de Niagara en Ontario, sensibles ou résistantes à l’azinphosméthyle. Chez les femelles résistantes, les glandes à phéromone contiennent environ la moitié des quantités d’acétate de (Z)-11-tétradécényle (Z11-14 : Ac), de (Z)-11-tetradécénol (Z11-14 : OH) et de (Z)-11-tétradécénal (Z11-14 : Al) contenues dans les glandes des femelles sensibles. Des quantités semblables d’acétate de (E)-11-tétradécényle (E11-14 : Ac) ont été trouvées dans les glandes des deux types de femelles. Les effluves de phéromone des femelles résistantes contiennent à peu près la moitié des quantités de Z11-14 : Ac, de E11-14 : Ac, de Z11-14 : OH et de Z11-14 : Al trouvées dans les effluves de phéromone des femelles sensibles. Le déclenchement et la durée de la période d’appel des femelles et les effets de l’âge sur la période d’appel sont semblables chez les tordeuses résistantes et les tordeuses sensibles. Dans une pommeraie, des pièges appâtés de femelles résistantes ont capturé environ deux fois moins de mâles marqués et relâchés, sensibles ou résistants, que les pièges appâtés de femelles sensibles. Il n’y avait pas de différences entre les réactions des antennes au Z11-14 : Ac ou au E11-14 : Ac synthétiques chez les mâles résistants et chez les mâles sensibles. Les antennes des mâles résistants se sont avérées moins sensibles au Z11-14 : OH et au Z11-14 : Al que celles des mâles sensibles. Dans un tunnel de vol, des extraits de glandes à phéromones de femelles sensibles et de femelles résistantes, de même que des femelles sensibles et des femelles résistantes en période d’appel exercent la même attirance pour les mâles sensibles et les mâles résistants. Dans une pommeraie, le taux de capture de mâles sensibles marqués et relâchés a été supérieur au taux de capture de mâles résistants dans les pièges contenant des femelles sensibles, mais pas dans les pièges contenant des femelles résistantes ou garnis de phéromone synthétique. La réduction de la capacité de localiser des femelles vierges semble indiquer que la présence de mâles résistants dans un verger de pommiers peut causer une réduction du nombre de tordeuses capturées dans les pièges garnis de phéromone. La réduction du nombre de captures n’est probablement pas causée par les femelles résistantes, puisque celles-ci ont un pouvoir d’attraction des mâles inférieur à celui des femelles sensibles et devraient théoriquement faire une compétition moins intense aux pièges que les femelles sensibles. Les différences observées entre les systèmes de communication par phéromone des Tordeuses à bandes obliques sensibles et résistantes sont probablement des effets pléotropes associés à la sélection naturelle qui favorise la résistance aux insecticides.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Borg-Karlson, A-K, Mozuraitis, R. 1996. Solid phase micro extraction technique for collecting semiochemicals. Identification of volatiles released by individual signaling Phyllonorycter sylvella moths. Zeitschrift fuer Naturforschung Section C Journal of Biosciences 51: 599602Google Scholar
Campanhola, C., McCutchen, B.F., Baehrecke, E.H., Plapp, F.W. Jr. 1991. Biological constraints associated with resistance to pyrethroids in the tobacco budworm (Lepidoptera: Noctuidae). Journal of Economic Entomology 84: 1404–11CrossRefGoogle Scholar
Carrière, Y., Roff, D.A. 1995. Change in genetic architecture resulting from the evolution of insecticide resistance: a theoretical and empirical analysis. Heredity 75: 618–29CrossRefGoogle Scholar
Carrière, Y., Deland, J-P, Roff, D.A., Vincent, C. 1994. Life-history costs associated with evolution of insecticide resistance. Proceedings of the Royal Society of London Series B Biological Sciences 258: 3540Google Scholar
Carrière, Y., Roff, D.A., Deland, J-P. 1995. The joint evolution of diapause and insecticide resistant: a test of an optimality model. Ecology 76: 1497–505Google Scholar
Chapman, P.J., Lienk, S.E. 1971. Tortricid fauna of apple in New York (Lepidoptera: Tortricidae). Geneva, New York: New York State Agricultural Experiment StationGoogle Scholar
Delisle, J., Royer, L. 1994. Changes in pheromone titer of oblique-banded leafroller, Choristoneura rosaceana, virgin females as a function of time of day, age, and temperature. Journal of Chemical Ecology 20: 4569Google Scholar
Delisle, J., Picimbon, J-F, Simard, J. 1999. Physiological control of pheromone production in Choristoneura fumiferana and C. rosaceana. Archives of Insect Biochemistry and Physiology 42: 253–65Google Scholar
El-Sayed, A., Gödde, J., Arn, H. 1999. Sprayer for quantitative application of odor stimuli. Environmental Entomology 28: 947–53CrossRefGoogle Scholar
El-Sayed, A.M., Fraser, H.W., Trimble, R.M. 2001. Chemical identification and behavioral activity of (Z)-11-tetradecenal in an eastern North American population of the obliquebanded leafroller (Lepidoptera: Tortricidae). The Canadian Entomologist 133: 365–74CrossRefGoogle Scholar
Fisher, R.A., Yates, F. 1957. Statistical tables for biological, agricultural and medical research. London: Oliver and BoydGoogle Scholar
Guennelon, G., D'Arcier, F., Chastellière, M.L. 1972. Piégeage sexuel de l'eudémis de la vigne Lobesia botrana Schiff (Lepidoptera: Tortricidae) dans la région d'Avignon. Bulletin de la Societe de Zoologie Agricole 71: 6177Google Scholar
Hill, A.S., Roelofs, W.L. 1979. Sex pheromone components of the obliquebanded leafroller moth, Choristoneura rosaceana. Journal of Chemical Ecology 5: 311Google Scholar
Howse, P., Stevens, I., Jones, O. 1998. Insect pheromones and their use in pest management. London: Chapman and HallCrossRefGoogle Scholar
Little, E.J., McCaffery, A.R., Walker, C.H. 1989. Biochemistry of insecticide resistance in Heliothis virescens. pp 335–7 in Proceedings of the Beltwide Cotton Production Research Conference, held Nashville, Tennesee, 2–7 January 1989. Memphis, Tennesee: National Cotton Council of AmericaGoogle Scholar
National Research Council. 1986. Pesticide resistance. Washington, DC: National Academy PressGoogle Scholar
Pree, D.J., Whitty, K.J., Pogoda, M.K., Bittner, L.A. 2001. Occurrence of resistance to insecticides in populations of the obliquebanded leafroller from orchards. The Canadian Entomologist 133: 111CrossRefGoogle Scholar
Reissig, W.H. 1978. Biology and control of the obliquebanded leafroller on apples. Journal of Economic Entomology 71: 804–9CrossRefGoogle Scholar
Reissig, W.H., Stanley, B.H., Hebding, H.E. 1986. Azinphosmethyl resistance and weight-related response of obliquebanded leafroller (Lepidoptera: Tortricidae) larvae to insecticides. Journal of Economic Entomology 79: 329–33Google Scholar
SAS Institute Inc. 1998. Statview. Cary, North Carolina: SAS Institute IncGoogle Scholar
Shorey, H.H., Hale, R.L. 1965. Mass rearing of the larvae of nine noctuid species on a simple artificial medium. Journal of Economic Entomology 58: 522–4Google Scholar
Smirle, M.J., Vincent, C., Zurowski, C.L., Rancourt, B. 1998. Azinphosmethyl resistance in the obliquebanded leafroller, Choristoneura rosaceana: reversion in the absence of selection and relationship to detoxication enzyme activity. Pesticide Biochemistry and Physiology 61: 183–9CrossRefGoogle Scholar
Snedecor, G.W., Cochran, W.G. 1967. Statistical methods. Ames, Iowa: Iowa State University PressGoogle Scholar
Solymar, B. 1999. Integrated pest management for Ontario apple orchards. Toronto, Ontario: Ontario Ministry of Agriculture, Food and Rural AffairsGoogle Scholar
Steel, R.G.D., Torrie, J.H. 1980. Principles and procedures of statistics. New York: McGraw-Hill, IncGoogle Scholar
Thomson, D.R., Angerilli, N.P.D., Vincent, C., Gaunce, A.P. 1991. Evidence for regional differences in the response of obliquebanded leafroller (Lepidoptera: Tortricidae) to sex pheromone blends. Environmental Entomology 20: 935–8Google Scholar
Vakenti, J.M., Gaunce, A.P., Slessor, K.N., King, G.G.S., Allan, S.A., Madsen, H.F., Borden, J.H. 1988. Sex pheromone components of the oblique-banded leafroller, Choristoneura rosaceana, in the Okanagan Valley of British Columbia. Journal of Chemical Ecology 14: 605–21Google Scholar
Weatherston, J., Percy, J.E., MacDonald, L.M. 1976. Field testing off cis-11-tetradecenal as attractant or synergist in Tortricinae. Experientia (Basel) 32: 178–9CrossRefGoogle ScholarPubMed
Weires, R., Riedl, H. 1991. Other tortricids on pome and stone fruits. pp 412–34 in van der Geest, L.P.S., Evenhuis, H.H. (Eds), Tortricid pests: their biology, natural enemies and control. New York: Elsevier Science Publishing Company, IncGoogle Scholar