Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T16:31:12.508Z Has data issue: false hasContentIssue false

Modelling the tri-trophic population dynamics of a host crop (Triticum aestivum; Poaceae), a major pest insect (Sitodiplosis mosellana; Diptera: Cecidomyiidae), and a parasitoid of the pest species (Macroglenes penetrans; Hymenoptera: Pteromalidae): a cohort-based approach incorporating the effects of weather

Published online by Cambridge University Press:  13 April 2020

O. Olfert*
Affiliation:
Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, Saskatchewan, S7N 0X2, Canada
R.M. Weiss
Affiliation:
Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, Saskatchewan, S7N 0X2, Canada
M. Vankosky
Affiliation:
Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, Saskatchewan, S7N 0X2, Canada
S. Hartley
Affiliation:
Saskatchewan Ministry of Agriculture, 346 McDonald Street, Regina, Saskatchewan, S4N 6P6, Canada
J.F. Doane
Affiliation:
Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, Saskatchewan, S7N 0X2, Canada
*
*Corresponding author. Email: [email protected]

Abstract

This paper describes a tri-trophic analysis of the ecological dynamics of a crop, an insect pest, and a natural enemy of the insect pest. Worldwide wheat (Triticum Linnaeus) (Poaceae) production in 2018–2019 was estimated at over 700 million metric tons in 2018–2019. Wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae), a serious insect pest of wheat, is widely distributed in many parts of the world where wheat production occurs. Macroglenes penetrans (Kirby) (Hymenoptera: Pteromalidae), a parasitoid of S. mosellana, has successfully established in most wheat midge-infested areas. Mechanistic, or process-based, population models were used in this study to assess the interactive population dynamics of the three species, based on their respective life cycles and meteorological factors. The models were validated with survey data from multiple sites over numerous years (1991–2016). These simulation models helped to detail our understanding of the tri-trophic population dynamics and will help guide pest management decisions both prior to the growing season and until wheat heading, when wheat is no longer susceptible to S. mosellana. The associated models also help identify gaps in system knowledge, provide a foundation for evaluating future innovative management options, and evaluate the potential impact of a changing climate.

Type
Research Papers
Copyright
© 2020 Her Majesty the Queen in Right of Canada

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Suzanne Blatt

References

Affolter, F. 1990. Structure and dynamics of the parasitoid complex of the wheat midges Sitodiplosis mosellana (Géhin) and Contarinia tritici (Kirby). International Institute of Biological Control, European Station, Delemont, Switzerland.Google Scholar
Alberta Agriculture and Forestry. 2019. Ministry of Alberta Agriculture and Forestry [online]. Available from https://www.alberta.ca/agriculture-and-forestry.aspx [accessed on 20 February 2020].Google Scholar
Bahlai, C.A., Weiss, R.M., and Hallett, R.H. 2013. A mechanistic model for a tri-trophic interaction involving soybean aphid, its host plants, and multiple natural enemies. Ecological Modelling, 254: 5470.CrossRefGoogle Scholar
Barnes, H.F. (editor). 1956. Gall midges of economic importance. Volume VII: gall midges of cereal crops. Crosby Lockwood & Son, London, United Kingdom.Google Scholar
Basedow, T. 1977. Der Einfluss von Temperatur und Niederschlägen auf Diapause und Phänologie der Weizengallmücken Contarinia tritici (Kirby) und Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae). Zoologische Jahrbücher Abteilung für Oecologie und Geographie der Tiere, 104: 302326.Google Scholar
Basedow, T. and Gillich, H. 1982. Untersuchungen zur Prognose des Auftretens der Weizengallmücken Contarinia tritici (Kirby) und Sitodiplosis mosellana (Géhin) (Diptera, Cecidomyiidae). II. Faktoren, die ein Schadauftreten der Mücken verhindern können. Anzeiger für Schädlingskunde, Pflanzenschutz, und Umweltschutz, 55: 8489.CrossRefGoogle Scholar
Basedow, T. and Schȕtte, F. 1971. Untersuchungen zum Uberliegen der Weizengallmucken Contarinia tritici (Kirby) und Sitodiplosis mosellana (Géhin) in Nordeutschland in Sommer 1970. Nachrichtenblatt des Deutschen Pflanzenschutzdienstes, 23: 48.Google Scholar
Basedow, T. and Schȕtte, F. 1973. Neue Untersuchungen über Eiablage, wirtschaftliche Schadensschwelle und Bekämpfung der Weizengallmücken (Diptera: Cecidomyidae). Zeitschrift für Angewandte Entomologie, 73: 238251.CrossRefGoogle Scholar
Basedow, T. and Schȕtte, F. 1982. Die Populationsdynamic die Weizengallmücken Contarinia tritici (Kirby) und Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyidae) in zwei Norddeutschen Weizenanbaugebeiten von 1969 bis 1976. Zoologische Jahrbücher Abteilung für Ökologie und Geographie der Tiere, 109: 3382.Google Scholar
Chavalle, S., Buhl, P.N., Censier, F., and De Proft, M. 2015. Comparative emergence phenology of the orange wheat blossom midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae) and its parasitoids (Hymenoptera: Pteromalidae and Platygastridae) under controlled conditions. Crop Protection, 76: 114120.CrossRefGoogle Scholar
Cheng, W., Long, Z., Zhang, Y., Liang, T., and Zhu-Salzman, K. 2017. Effects of temperature, soil moisture and photoperiod on diapause termination and post-diapause development of the wheat blossom midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae). Journal of Insect Physiology, 103: 7885.CrossRefGoogle Scholar
Ding, H. and Lamb, R.J. 1999. Oviposition and larval establishment of Sitodiplosis mosellana (Diptera: Cecidomyiidae) on wheat (Gramineae) at different growth stages. The Canadian Entomologist, 131: 475481.10.4039/Ent131475-4CrossRefGoogle Scholar
Doane, J.F. 1988. Biology and biological control potential of a wheat midge parasite, Pirene penetrans in Saskatchewan. Final Report to Agriculture Development Fund. Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada.Google Scholar
Doane, J.F., Mukerji, M.K., and Olfert, O. 2000. Sampling distribution and sequential sampling for subterranean stages of orange wheat blossom midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae) in spring wheat. Crop Protection, 19: 427434.CrossRefGoogle Scholar
Doane, J.F. and Olfert, O. 2008. Seasonal development of wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae), in Saskatchewan, Canada. Crop Protection, 27: 951958.CrossRefGoogle Scholar
Doane, J.F., Olfert, O., and Mukerji, M.K. 1987. Extraction precision of sieving and brine flotation for removal of wheat midge, Sitodiplosis mosellana (Diptera: Cecidomyiidae), cocoons and larvae from soil. Journal of Economic Entomology, 80: 268271.CrossRefGoogle Scholar
Elliott, R.H. and Mann, L.W. 1996. Susceptibility of red spring wheat, Triticum aestivum L. cv. Katepwa, during heading and anthesis to damage by wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cedidomyiidae). The Canadian Entomologist, 128: 367375.CrossRefGoogle Scholar
Elliott, R.H., Mann, L., and Olfert, O. 2009. Calendar and degree-day requirements for emergence of adult wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae) in Saskatchewan, Canada. Crop Protection, 28: 588594.CrossRefGoogle Scholar
Elliott, R.H., Mann, L., and Olfert, O. 2011. Calendar and degree-day requirements for emergence of adult Macroglenes penetrans (Kirby), an egg-larval parasitoid of wheat midge, Sitodiplosis mosellana (Géhin). Crop Protection, 30: 405411.CrossRefGoogle Scholar
Environment and Climate Change Canada. 2019. Historical data [online]. https://climate.weather.gc.ca/historical_data/search_historic_data_e.html [accessed 20 February 2020].Google Scholar
Floate, K.D., Doane, J.F., and Gillott, C. 1990. Carabid predators of the wheat midge (Diptera: Cecidomyiidae) in Saskatchewan. Environmental Entomology, 19: 15031511.CrossRefGoogle Scholar
Gagné, R.J. and Doane, J.F. 1999. The larval instars of the wheat midge, Sitodiplosis mosellana (Gehin) (Diptera: Cecidomyiidae). Proceedings of the Entomological Society of Washington, 101: 5763.Google Scholar
Hallett, R.H., Goodfellow, S.A., Weiss, R.M., and Olfert, O. 2009. MidgEmerge, a new predictive tool, indicates the presence of multiple emergence phenotypes of the overwintered generation of swede midge. Entomologia Experimentalis et Applicata, 130: 8197.CrossRefGoogle Scholar
Hinks, C.F. and Doane, J.F. 1988. Observations on rearing and diapause termination of Sitodiplosis mosellana (Diptera: Cecidomyiidae) in the laboratory. Journal of Economic Entomology, 81: 18161818.10.1093/jee/81.6.1816CrossRefGoogle Scholar
Jacquemin, G., Chavalle, S., and De Proft, M. 2014. Forecasting the emergence of the adult orange wheat blossom midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae) in Belgium. Crop Protection, 58: 613.CrossRefGoogle Scholar
Lamb, R.J., Wise, I.L., Olfert, O., Gavloski, J.E., and Barker, P.S. 1999. Distribution and seasonal abundance of Sitodiplosis mosellana (Diptera: Cecidomyiidae) in spring wheat. The Canadian Entomologist, 131: 387397.10.4039/Ent131387-3CrossRefGoogle Scholar
Li, Z., Zalucki, M.P., Yonow, T., Kriticos, D.J., Bao, H., Chen, H., et al. 2016. Population dynamics and management of diamondback moth (Plutella xylostella) in China: the relative contributions of climate, natural enemies and cropping patterns. Bulletin of Entomological Research, 106: 197214.CrossRefGoogle ScholarPubMed
Maywald, G.F., Kriticos, D.J, Sutherst, D.W., and Bottomley, W. 2007. DYMEX model builder, user guide. Hearne Scientific Software. Melbourne, Australia.Google Scholar
Miller, P., Lanier, W., and Brandt, S. 2001. Using growing degree days to predict plant stages. Montguide MT200103 AG 7/2001. Cooperative Extension Service, Montana State University, Bozeman, Montana, United States of America.Google Scholar
Mukerji, M.K., Olfert, O., and Doane, J.F. 1988. Development of sampling designs for egg and larval populations of the wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae), in wheat. The Canadian Entomologist, 120: 497505.CrossRefGoogle Scholar
North Dakota Agricultural Weather Network. 2019. Wheat growing degree days/growth stages and midge degree days [online]. Available from https://ndawn.ndsu.nodak.edu/wheat-growing-degree-days.html [accessed 25 November 2019].Google Scholar
Oakley, J.N., Cumbleton, P.C., Corbett, S.J., Saunderst, P., Green, D.I., Youngs, J.E.B., and Rodgers, R. 1998. Prediction of orange wheat blossom midge activity and risk of damage. Crop Protection, 17: 145149.CrossRefGoogle Scholar
Olfert, O., Elliott, R.H., and Hartley, S. 2009. Non-native insects in agriculture: strategies to manage the economic and environmental impact of wheat midge, Sitodiplosis mosellana, in Saskatchewan. Biological Invasions, 11: 127133.CrossRefGoogle Scholar
Olfert, O., Weiss, R.M., and Elliott, R.H. 2016. Bioclimatic approach to assessing the potential impact of climate change on wheat midge (Diptera: Cecidomyiidae) in North America. The Canadian Entomologist, 148: 5267.CrossRefGoogle Scholar
Pivnick, K.A. and Labbé, E. 1993. Daily patterns of activity of females of the orange wheat blossom midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae). The Canadian Entomologist, 125: 725736.CrossRefGoogle Scholar
Reeher, M.M. 1945. The wheat midge in the Pacific Northwest. Circular 732. United States Department of Agriculture, United States Government Printing Office, Washington, District of Columbia, United States of America.Google Scholar
Shahbandeh, M. 2019. Wheat - production volume worldwide 2011/2012–2019/20 [online]. Available from www.statista.com/statistics/267268/production-of-wheat-worldwide-since-1990 [accessed 5 May 2019].Google Scholar
Smith, M.A.H. and Lamb, R.J. 2004. Causes of variation in body size and consequences for the life history of Sitodiplosis mosellana. The Canadian Entomologist, 136: 839850.CrossRefGoogle Scholar
Yonow, T. and Sutherst, R.W. 1998. The geographical distribution of the Queensland fruit fly, Bactrocera (Dacus) tryoni, in relation to climate. Australian Journal of Agricultural Research, 49: 935953.Google Scholar
Yonow, T., Zalucki, M.P., Sutherst, R.W., Dominiak, B.C., Maywald, G.F., Maelzer, D.A., and Kriticos, D.J. 2004. Modelling the population dynamics of the Queensland fruit fly, Bactrocera (Dacus) tryoni: a cohort-based approach incorporating the effects of weather. Ecological Modelling, 173: 930.CrossRefGoogle Scholar
Zadoks, J.C., Chang, T.T., and Konzak, C.F. 1974. A decimal code for the growth stages of cereals. Weed Research, 14: 415421.CrossRefGoogle Scholar