Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T16:48:23.576Z Has data issue: false hasContentIssue false

Mitochondrial DNA variation in two invasive birch leaf-mining sawflies in North America

Published online by Cambridge University Press:  02 April 2012

Chris J.K. MacQuarrie*
Affiliation:
Department of Renewable Resources, 442 Earth Sciences Building, University of Alberta, Edmonton, Alberta, Canada T6G 2E3; Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, 5320 122 Street, Edmonton, Alberta, Canada T6H 3S5
David W. Langor
Affiliation:
Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, 5320 122 Street, Edmonton, Alberta, Canada T6H 3S5
Felix A.H. Sperling
Affiliation:
Department of Biological Sciences, 405A Biological Sciences Building, University of Alberta, Edmonton, Alberta, Canada T6E 2E9
*
1 Corresponding author (e-mail: [email protected]).

Abstract

Mitochondrial cytochrome oxidase I and II genes were sequenced for two invasive alien birch (Betula L. [Betulaceae]) leaf-mining sawflies, Profenusa thomsoni (Konow, 1886) (Hymenoptera: Tenthredinidae) and Scolioneura betuleti (Klug, 1816) (Hymenoptera: Tenthredinidae), accidentally introduced from Europe to North America. Ten North American and two European populations of P. thomsoni were sampled. As no genetic variation was observed for this parthenogenic species in Europe or North America, there is no evidence that this species was introduced more than once into North America. A single Canadian population of putative S. betuleti was genetically characterized and compared with populations of S. betuleti and Scolioneura vicina Konow, 1894 in Europe to resolve the species identity of the introduced Canadian population. Three haplotypes were present in European material but only one haplotype was represented in material collected in Canada. The haplotype in the Canadian population occurred in both S. betuleti and S. vicina in Europe. Thus, this preliminary genetic work cannot provide certain identity of the Canadian species. Moreover, there was no significant genetic difference between putative S. betuleti and S. vicina in Europe, leading us to suggest that S. vicina may not be reproductively isolated from S. betuleti, despite ecological differences.

Résumé

Les gènes d'ADN mitochondrial cytochrome oxydase I et II ont été séquencés chez deux espèces de tenthrèdes (Hymenoptera : Tenthredinidae) exotiques et invasives, mineuses des feuilles du bouleau (Betula L. [Betulaceae]), Profenusa thomsoni (Konow, 1886) et Scolioneura betuleti (Klug, 1816), introduites accidentellement en Amérique du Nord à partir d'Europe. Dix populations Nord Américaines et deux Européennes de P. thomsoni ont été échantillonnées. Puisqu'aucune variation génétique n'a été observée chez cette espèce parthénogénique en Europe et en Amérique du Nord, les données contredisent l'hypothèse selon laquelle cette espèce fut introduite plus d'une fois en Amérique du Nord. Une population canadienne de tenthrèdes présumément appartenant à l'espèce S. betuleti a été caractérisée génétiquement et comparée aux populations de S. betuleti et S. vicina Konow, 1894 d'Europe dans le but de clarifier l'identification à l'espèce de la population introduite au Canada. Trois haplotypes étaient présents dans le matériel européen mais seulement un était représenté dans le matériel collecté au Canada. L'haplotype de la population canadienne a été simultanément retrouvé chez des individus de S. betuleti et S. vicina provenant d'Europe. Conséquemment, ce travail génétique préliminaire ne peut pas confirmer l'identité de l'espèce canadienne. De plus, il n'y avait aucune différence génétique significative entre les spécimens européens présumés comme appartenant aux espèces S. betuleti et S. vicina, ce qui laisse croire que S. vicina n'est pas isolée reproductivement de S. betuleti, malgré les différences écologiques.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, T.A., Spence, J.R., and Sperling, F.A.H. 2005. Mitochondrial introgression is restricted relative to nuclear markers in a water strider (Hemiptera: Gerridae) hybrid zone. Canadian Journal of Zoology, 83: 432444.CrossRefGoogle Scholar
Altenhofer, E., and Taeger, A. 1998. Zur Kenntnis der Gattung Scolioneura Konow, 1890 (Hymenoptera: Tenthredinidae). In Pflanzenwespen Deutschlands (Hymenoptera, Symphyta). Kommentierte Bestandsaufnahme. Edited by Taeger, A. and Blank, S.M.. Goecke & Evers, Keltern, Germany. pp. 225226.Google Scholar
Armstrong, K.F., and Ball, S.L. 2005. DNA barcodes for biosecurity: invasive species identification. Philosophical Transactions of the Royal Society of London Series B, 360: 18131823.CrossRefGoogle ScholarPubMed
Baker, D.A., Loxdale, H.D., and Edwards, O.R. 2003. Genetic variation and founder effects in the parasitoid wasp, Diaeretiella rapae (M'intosh) (Hymenoptera: Braconidae: Aphdiidae), affecting its potential as a biological control agent. Molecular Ecology, 12: 33033311.CrossRefGoogle Scholar
Baker, R., Cannon, R., Bartlett, P., and Barker, I. 2005. Novel strategies for assessing and managing the risks posed by invasive alien species to global crop production and biodiversity. Annals of Applied Biology, 146: 177191.CrossRefGoogle Scholar
Benson, R.B. 1950. An introduction to the natural history of British sawflies (Hymenoptera: Symphyta). Transactions of the Society for British Entomology, 10: 45142.Google Scholar
Benson, R.B. 1959. Further studies on the Fenusini (Hymenoptera: Tenthredinidae). Proceedings of the Royal Entomological Society of London B, 28: 9092.Google Scholar
Clary, D.O., and Wolstenholme, D.R. 1985. The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene evolution, and genetic code. Journal of Molecular Evolution, 22: 252271.CrossRefGoogle Scholar
Cognato, A.I. 2006. Standard percent DNA sequence difference for insects does not predict species boundaries. Journal of Economic Entomology, 99: 10371045.CrossRefGoogle Scholar
Cognato, A.I., Sun, J.-H., Anducho-Reyes, A., and Owen, D.R. 2005. Genetic variation and origin of red turpentine beetle (Dendroctonus valens Le-Conte) introduced to the People's Republic of China. Agricultural and Forest Entomology, 7: 8794.CrossRefGoogle Scholar
Davies, N., Villablanca, F.X., and Roderick, G.K. 1999. Bioinvasions of the medfly Ceratitis capitata: source estimation using DNA sequences at multiple interon loci. Genetics, 153: 351360.CrossRefGoogle Scholar
Digweed, S.C., McQueen, R.L., Spence, J.R., and Langor, D.W. 2003. Biological control of the ambermarked birch leafminer, Profenusa thomsoni (Hymenoptera: Tenthredinidae), in Alberta. Report No. NOR-X-389. Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, Alberta.Google Scholar
Downie, D.A. 2002. Locating the sources of an invasive pest, grape phyloxera, using a mitochondrial DNA genealogy. Molecular Ecology, 11: 20132026.CrossRefGoogle Scholar
Drouin, J.A., and Wong, H.R. 1984. Birch leaf-mining sawflies in Alberta (Hymenoptera: Tenth-redinidae). Report No. NOR-X-260. Northern Forest Research Centre, Canadian Forestry Service, Environment Canada, Edmonton, Alberta.Google Scholar
Evans, H.J., Sarjan, R.J., and Brodersen, H. 1985. Results of forest insect and disease surveys in the central region of Ontario, 1984. Miscellaneous Report No. 22. Great Lakes Forest Research Centre, Canadian Forest Service, Sault Ste. Marie, Ontario.Google Scholar
Gwiazdowski, R.A., Van Driesche, R.G., Desnoyers, A., Lyon, S., Wu, S.-a., Kamata, N., and Normark, B.B. 2006. Possible geographic origin of beech scale, Cryptococcus fagisuga (Hemiptera: Eriococcidae), an invasive pest in North America. Biological Control, 39: 918.CrossRefGoogle Scholar
Havill, N.P., Montgomery, M.E., Yu, G., Shiyake, S., and Caccone, A. 2006. Mitochondrial DNA from hemlock woolly adelgid (Hemiptera: Adelgidae) suggests cryptic speciation and pinpoints the source of the introduction to eastern North America. Annals of the Entomological Society of America, 99: 195203.CrossRefGoogle Scholar
Hebert, P.D.N., Cywinska, A., Ball, S.L., and deWaard, J.R. 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B, 270: 313321.CrossRefGoogle ScholarPubMed
Heidemaa, M. 2004. Systematic studies on sawflies of the genera Dolerus, Empria, Caliroa (Hymenoptera: Tenthredinidae). University of Tartu, Tartu, Estonia.Google Scholar
Hufbauer, R.A., Bogdanowicz, S.M., and Harrison, G. 2004. The population genetics of a biological control introduction: mitochondrial DNA and microsatellite variation in native and introduced populations of Aphidus ervi, a parasitoid wasp. Molecular Ecology, 13: 337348.CrossRefGoogle Scholar
Hurst, G.D.D., and Jiggins, F.M. 2005. Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts. Proceedings of the Royal Society of London Series B, 272: 15251534.Google ScholarPubMed
Johnson, R.N., and Starks, P.T. 2004. A surprising level of genetic diversity in an invasive wasp: Polistes dominulus in the northeastern United States. Annals of the Entomological Society of America, 97: 732737.CrossRefGoogle Scholar
Kenis, M., and Carl, K. 1995. Birch leaf-mining sawflies (Fenusa pusilla (Lepeltier) and Profenusa thomsoni (Konow)). In International Institute of Biological Control, European Station, Canadian Forest Service Annual Report 1996. Edited by Kenis, M., Carl, K., Aydam, M. El, Lopez-Vaamonde, C., and Toelen, P.. p. 35.Google Scholar
Laffin, R.D., Dosdall, L.M., and Sperling, F.A.H. 2005. Population structure of the cabbage seedpod weevil, Ceutorhynchus obstrictus (Marsham) (Coleoptera Curculionidae): origins of North American introductions. Environmental Entomology, 34: 504510.CrossRefGoogle Scholar
Lindquist, O.H. 1955. Leaf-mining sawflies of birch in Ontario. Bi-monthly progress report, Vol. 11, No. 5 (Sept./Oct.). Department of Agriculture, Ottawa, Ontario.Google Scholar
Lindquist, O.H. 1959. A key to the larvae of leaf-mining sawflies on birch in Ontario with notes on their biology. The Canadian Entomologist, 91: 625627.CrossRefGoogle Scholar
Maddison, D.R., and Maddison, W.P. 2002. MacClade. Version 4.05 [computer program]. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
Martin, J.L. 1960. The bionomics of Profenusa thomsoni (Konow) (Hymenoptera: Tenthredinidae) a leaf mining sawfly on Betula spp. The Canadian Entomologist, 92: 376384.CrossRefGoogle Scholar
Muller, C., Barker, A., Doeve, J.-L., de Jong, P.W., de Vos, H., and Brakefield, P.M. 2004. Phylogeography of two parthenogenetic sawfly species (Hymenoptera: Tenthredinidae): relationship of population genetic differentiation to host plant distribution. Biological Journal of the Linnean Society, 83: 219227.CrossRefGoogle Scholar
Navia, D., Morales, G.J.d., Roderick, G., and Navajas, M. 2005. The invasive coconut mite Aceria guerreronis (Acari: Eriophyidae): origin and invasion sources inferred from mitochondrial (16S) and nuclear (ITS) sequences. Bulletin of Entomological Research, 95: 505516.CrossRefGoogle Scholar
Nyman, T., Zinovjev, A.G., Vikberg, V., and Farrel, B.D. 2006. Molecular phylogeny of the sawfly subfamily Nematinae (Hymenoptera: Tenthredinidae). Systematic Entomology, 31: 569583.CrossRefGoogle Scholar
Nystrom, K.L., and Evans, H.J. 1989. Biological notes on a birch leaf edgeminer, Scolioneura betuleti (Hymenoptera: Tenthredinidae), new to north America. Proceedings of the Entomological Society of Ontario, 120: 1724.Google Scholar
Pieronek, B. 1995. Przezwalnosnc larw minujacych blonkowek (Hymenoptera, Tenthredinidae) na tle presji czynnikow biotycznych i srodowiskowych. Sylwan, 6: 7378.Google Scholar
Pimentel, D., Lach, L., Zuniga, R., and Morrison, D. 2000. Environmental and economic costs of non-indigenous species in the United States. Bioscience, 59: 5365.CrossRefGoogle Scholar
Roe, A.D., Stein, J.D., Gillette, N., and Sperling, F.A.H. 2006. Identification of Dioryctria (Lepidoptera: Pyralidae) in a seed orchard in Chico, California. Annals of the Entomological Society of America, 99: 433448.CrossRefGoogle Scholar
Ross, H.H. 1951. Symphyta. In Hymenoptera of North America north of Mexico. Edited by Musselbeck, C.F.W., Krombein, K.V., and Townes, H.K.. United States Department of Agriculture, Washington, D.C. pp. 489.Google Scholar
Sakai, A.M., Allendorf, F.W., Holt, J.S., Lodge, D.M., Molofsky, J., With, K.A., Baughman, S., Cabin, R.J., Cohen, J.E., Ellestrand, N.C., McCauley, D.E., O'Neil, P., Parker, I.M., Thompson, J.N., and Weller, S.G. 2001. The population biology of invasive species. Annual Review of Ecology and Systematics, 32: 305332.CrossRefGoogle Scholar
Schönrogge, K., and Altenhofer, E. 1992. On the biology and larval parasitoids of the leaf-mining sawflies Profenusa thomsoni (Konow) and P. pygmaea (Konow) (Hym., Tenthredinidae). Entomologist's Monthly Magazine, 128: 99108.Google Scholar
Schulmeister, S. 2003. Simultaneous analysis of basal Hymenoptera (Insecta): introducing robust-choice sensitivity analysis. Biological Journal of the Linnean Society, 79: 245275.CrossRefGoogle Scholar
Simberloff, D., Parker, I.M., and Windle, P.N. 2005. Introduced species policy, management, and future research needs. Frontiers in Ecology and Environment, 3: 1220.CrossRefGoogle Scholar
Simon, C., Frati, F., Breckenbach, A., Crespi, B., Liu, H., and Flook, P. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America, 87: 651701.CrossRefGoogle Scholar
Snyder, C., MacQuarrie, C.J.K., Zogas, K., Kruse, J.J., and Hard, J. 2007. Invasive species in the Last Frontier: distribution and phenology of birch leafmining sawflies in Alaska. Journal of Forestry. In press.Google Scholar
Sperling, F.A.H., Landry, J.-F., and Hickey, D.A. 1995. DNA-based identification of introduced ermine moth species in North America (Lepidoptera: Yponomeutidae). Annals of the Entomological Society of America, 88: 155162.CrossRefGoogle Scholar
Swofford, D.L. 2003. PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Version 4.04 [computer program]. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
Tsutsui, N.D., Suarez, A.D., Holway, D.A., and Case, T.J. 2000. Reduced genetic variation and the success of an invasive species. Proceedings of the National Academy of Sciences of the United States of America, 97: 59485953.CrossRefGoogle ScholarPubMed
Walters, L.J., Brown, K.R., Stam, W.T., and Olsen, J.L. 2006. E-commerce and Caulerpa: unregulated dispersal of invasive species. Frontiers in Ecology and the Environment, 4: 7579.CrossRefGoogle Scholar
Werren, J.H. 1997. Biology of Wolbachia. Annual Review of Entomology, 42: 587609.CrossRefGoogle ScholarPubMed