Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T05:59:25.135Z Has data issue: false hasContentIssue false

Methods for assessing infestations of sunflower stem weevil (Coleoptera: Curculionidae) in sunflower stems

Published online by Cambridge University Press:  25 March 2014

Jarrad R. Prasifka*
Affiliation:
United States Department of Agriculture, Agriculture Research Service, Northern Crop Science Laboratory, 1605 Albrecht Boulevard North, Fargo, North Dakota 58102, United States of America
James F. Campbell
Affiliation:
United States Department of Agriculture, Agriculture Research Service, Center for Grain and Animal Health Research, 1515 College Avenue, Manhattan, Kansas 66502, United States of America
Robert M. Aiken
Affiliation:
Northwest Research-Extension Center, Kansas State University, 105 Experiment Farm Road, Colby, Kansas 67701, United States of America
Jeffrey D. Bradshaw
Affiliation:
Panhandle Research & Extension Center, University of Nebraska, 4502 Avenue I, Scottsbluff, Nebraska 69361, United States of America
*
1Corresponding author (e-mail: [email protected]).

Abstract

The sunflower stem weevil, Cylindrocopturus adspersus LeConte (Coleoptera: Curculionidae), reduces sunflower, Helianthus annuus Linnaeus (Asteraceae), yields by spreading pathogens, damaging vascular tissues, and promoting lodging of sunflower plants. To assess weevil populations for host plant resistance and insecticide field trials, larvae are dissected out of stems and counted; a process that is slow and limits experimental designs. To improve efficiency of sunflower stem weevil sample processing, field-collected sunflower samples were used to evaluate whether digital radiographs (X-rays) of stem sections or population estimates from rearing out overwintering stem weevils are suitable substitutes for dissection of complete stems. Digital X-rays of small stem pieces (15 cm above soil level) split longitudinally were found to explain over 75% of the variation in numbers of weevil larvae from dissected stem samples (50 cm), but required less than one-fifth the time of manual dissection. Use of small emergence boxes to estimate weevil populations was similarly time efficient, but may not be easily related to weevils per plant because of parasitism and other mortality. Results suggest for large field trials with sunflower stem weevils, digital X-rays provide much more time-efficient larval population estimates.

Résumé

Le charançon de la tige du tournesol, Cylindrocopturus adspersus LeConte (Coleoptera: Curculionidae), réduit les rendements du tournesol, Helianthus annuus Linnaeus (Asteraceae), en transmettant des pathogènes, en endommageant les tissus vasculaires et en favorisant la verse chez les plants de tournesol. Afin d’évaluer les populations de charançons pour des essais sur la résistance des plantes et les insecticides, on retire les larves des tiges par dissection et on les énumère, un processus long qui impose des restrictions aux plans d'expérience. Afin d'améliorer l'efficacité du traitement des échantillons de charançons de la tige du tournesol, nous avons utilisé des échantillons de tournesol récoltés sur le terrain pour évaluer si des radiographies digitales (rayons X) de sections de tiges ou des estimations de populations obtenues par élevage de charançons après l'hibernation constituent des méthodes adéquates de remplacement de la dissection des tiges complètes. Des radiographies digitales auX-rayons X de petites sections de tiges (15 cm au-dessus du niveau du sol) fendues longitudinalement expliquent plus de 75% de la variation des nombres de larves de charançons trouvées dans les échantillons provenant de tiges disséquées (50 cm), mais requièrent moins d'un cinquième du temps nécessaire pour les dissections manuelles. L'utilisation de petites boîtes d’émergence pour estimer les populations de charançons permet aussi une économie de temps, mais la relation avec le nombre de charançons par plant est moins facile à établir à cause du parasitisme et des autres causes de mortalité. Nos résultats indiquent que pour de grandes expériences en nature avec les charançons de la tige du tournesol, la radiographie-X digitale fournit des estimations des populations de larves qui permettent une plus grande économie de temps.

Type
Techniques – NOTE
Copyright
Copyright © Entomological Society of Canada. This is a work of the U.S. Government and is not subject to copyright protection in the United States 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Gilles Boiteau

*

Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the United States Department of Agriculture.

References

Charlet, L.D. 1983a. Ovipositional behavior and site selection by a sunflower stem weevil, Cylindrocopturus adspersus (Coleoptera: Curculionidae). Environmental Entomology, 12: 868870.Google Scholar
Charlet, L.D. 1983b. Distribution and abundance of a stem weevil, Cylindrocopturus adspersus (Coleoptera: Curculionidae), in cultivated sunflower in the northern plains. Environmental Entomology, 12: 15261528.Google Scholar
Charlet, L.D., Aiken, R.M., Miller, J.F., Seiler, G.J. 2009. Resistance among cultivated sunflower germplasm to stem-infesting pests in the Central Great Plains. Journal of Economic Entomology, 102: 12811290.Google Scholar
Charlet, L.D., Oseto, C.Y., Gulya, T.J. 1985. Application of systemic insecticides at planting: effects on sunflower stem weevil (Coleoptera: Curculionidae) larvae numbers, plant lodging, and seed yield in North Dakota. Journal of Economic Entomology, 78: 13471349.Google Scholar
Pearson, T.Brabec, D.L. 2007. Detection of wheat kernels with hidden insect infestations with an electrically conductive roller mill. Applied Engineering in Agriculture, 23: 639645.Google Scholar
Pearson, T.C., Cetin, A.E., Tewfik, A.H., Haff, R.P. 2007. Feasibility of impact-acoustic emissions for detection of damaged wheat kernels. Digital Signal Processing, 17: 617633.CrossRefGoogle Scholar
Peng, C.Brewer, G.J. 1995. Description of achene damage by the red sunflower seed weevil, the banded sunflower moth, and the sunflower moth. Journal of the Kansas Entomological Society, 68: 263267.Google Scholar
Rogers, C.E.Jones, O.R. 1979. Effects of planting date and soil water on infestation of sunflower by larvae of Cylindrocopturus adspersus. Journal of Economic Entomology, 72: 529531.Google Scholar
Singh, C.B., Jayas, D.S., Paliwal, J., White, N.D.G. 2009. Detection of insect-damaged wheat kernels using near-infrared hyperspectral imaging. Journal of Stored Products Research, 45: 151158.Google Scholar
Toews, M.D., Pearson, T.C., Campbell, J.F. 2006. Imaging and automated detection of Sitophilus oryzae (Coleoptera: Curculionidae) pupae in hard red winter wheat. Journal of Economic Entomology, 99: 583592.Google Scholar
Yang, S.M., Rogers, C.E., Luciani, N.D. 1983. Transmission of Macrophomina phaseolina in sunflower by Cylindrocopturus asdpersus. Phytopathology, 72: 14671469.Google Scholar