Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T05:41:01.513Z Has data issue: false hasContentIssue false

Manipulating pollen supply in honey bee colonies during the fall does not affect the performance of winter bees

Published online by Cambridge University Press:  02 April 2012

Heather R. Mattila*
Affiliation:
Department of Environmental Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
Gard W. Otis
Affiliation:
Department of Environmental Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
*
1 Correspondence author (e-mail: [email protected]).

Abstract

Each fall, honey bee (Apis mellifera L. (Hymenoptera: Apidae)) colonies in northern temperate regions rear a population of long-lived winter bees that maintains a broodless nest throughout the winter and resumes brood-rearing activities in the spring. Pollen supply in colonies is closely tied to this phenomenon; winter bees sequester large reservoirs of pollen-derived nutrients in their bodies and the brood-rearing capacity of colonies is dictated by the availability of pollen. We determined the effects of manipulating pollen supply during the fall on the number of winter bees present in colonies by spring, their mass and protein content before and after winter, and their capacity to rear brood during the spring. Colonies were either supplemented with or partially deprived of pollen during the fall, while a third group of colonies was not manipulated (control). We found that the performance of winter bees was not enhanced by supplementing colonies with pollen in the fall, nor did worker function suffer if pollen supply was restricted. Similar numbers of winter bees survived to spring in colonies and workers had similar physiology and brood-rearing efficiencies. These results suggest that beekeepers would not benefit by investing in fall pollen supplements to maximize colony growth in early spring.

Résumé

À chaque automne, dans les régions tempérées boréales, les colonies d'abeilles domestiques, Apis mellifera L. (Hymenoptera : Apidae), produisent une population d'abeilles d'hiver à vie longue qui maintient le nid sans couvain pendant l'hiver et reprend les activités d'élevage des larves au printemps. Les réserves de pollen de la colonie sont de grande importance dans ce phénomène : les abeilles d'hiver emmagasinent dans leur organisme de grandes quantités de nutriments dérivés du pollen et la capacité de la colonie de produire un couvain est déterminée par la disponibilité du pollen. Nous avons déterminé les effets de la manipulation des réserves de pollen durant l'automne sur le nombre d'abeilles d'hiver présentes dans la colonie au printemps, sur leur masse et leur contenu en protéines avant et après l'hiver, ainsi que sur leur capacité d'élever le couvain au printemps. Nous avons fourni du pollen à certaines colonies, enlevé du pollen à d'autres et laissé intactes des colonies témoins. L'addition de pollen à l'automne dans la colonie n'améliore pas la performance des abeilles d'hiver; le retrait de pollen ne réduit pas non plus l'activité des ouvrières. Dans les deux cas, des nombres semblables d'abeilles d'hiver dans la colonie survivent jusqu'au printemps et les ouvrières ont une physiologie et une capacité d'élevage du couvain similaires. Nos résultats indiquent que les apiculteurs n'ont pas d'avantage à ajouter des suppléments de pollen à l'automne pour maximiser la croissance de la colonie tôt au printemps.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amdam, G.V., and Omholt, S.W. 2002. The regulatory anatomy of honeybee lifespan. Journal of Theoretical Biology, 216: 209228.CrossRefGoogle ScholarPubMed
Brouwers, E.V.M. 1982. Measurement of hypopharyngeal gland activity in the honeybee. Journal of Apicultural Research, 21: 193198.CrossRefGoogle Scholar
Crailsheim, K. 1986. Dependence of protein metabolism on age and season in the honeybee (Apis mellifica carnica Pollm). Journal of Insect Physiology, 32: 629634.CrossRefGoogle Scholar
Crailsheim, K. 1990. The protein balance of the honey bee worker. Apidologie, 21: 417429.CrossRefGoogle Scholar
Farrar, C.L. 1934. Bees must have pollen. Gleanings in Bee Culture, 62: 276278.Google Scholar
Farrar, C.L. 1936. Influence of pollen reserves on the surviving populations of over-wintered colonies. American Bee Journal, 76: 452454.Google Scholar
Fluri, P., and Bogdanov, S. 1987. Age dependence of fat body protein in summer and winter bees (Apis mellifera). In Chemistry and biology of social insects. Edited by Eder, J. and Rembold, H.. Verlag J. Peperny, Munchen, Germany. pp. 170171.Google Scholar
Fluri, P., Lüscher, M., Wille, H., and Gerig, L. 1982. Changes in weight of the pharyngeal gland and haemolymph titres of juvenile hormone, protein and vitellogenin in worker honey bees. Journal of Insect Physiology, 28: 6168.CrossRefGoogle Scholar
Free, J.B., and Racey, P.A. 1968. The effect of the size of honeybee colonies on food consumption, brood rearing and the longevity of the bees during winter. Entomologia Experimentalis et Applicata, 11: 241249.CrossRefGoogle Scholar
Fukuda, H., and Sakagami, S. 1968. Worker brood survival in honeybees. Researches on Population Ecology, 10: 3139.CrossRefGoogle Scholar
Fukuda, H., and Sekiguchi, K. 1966. Seasonal change of the honeybee worker longevity in Sapporo, North Japan, with notes on some factors affecting the life-span. Japanese Journal of Ecology, 16: 206212.Google Scholar
Haydak, M.H. 1970. Honey bee nutrition. Annual Review of Entomology, 15: 143156.CrossRefGoogle Scholar
Herbert, E.W. Jr., 1992. Honey bee nutrition. In The hive and the honey bee, 5th ed. Edited by Graham, J.M.. Dadant & Sons, Hamilton, Illinois. pp. 197233.Google Scholar
Hrassnigg, N., and Crailsheim, K. 1998. Adaptation of hypopharyngeal gland development to the brood status of honeybee (Apis mellifera L.) colonies. Journal of Insect Physiology, 44: 929939.CrossRefGoogle Scholar
Jeffree, E.P. 1955. Observations on the decline and growth of honey bee colonies. Journal of Economic Entomology, 48: 723726.CrossRefGoogle Scholar
Jeffree, E.P., and Allen, M.D. 1956. The influence of colony size and of Nosema disease on the rate of population loss in honey bee colonies in winter. Journal of Economic Entomology, 49: 831834.CrossRefGoogle Scholar
Kunert, K., and Crailsheim, K. 1988. Seasonal changes in carbohydrate, lipid and protein content in emerging worker honeybees and their mortality. Journal of Apicultural Research, 27: 1321.CrossRefGoogle Scholar
Lee, P.C., and Winston, M.L. 1987. Effects of reproductive timing and colony size on the survival, offspring colony size and drone production in the honey bee (Apis mellifera). Ecological Entomology, 12: 187195.CrossRefGoogle Scholar
Lotmar, R. 1939. Der Eiweiss-Stoffwechsel im Bienenvolk (Apis mellifica) während der Ueberwinterung. Landwirtschaftliches Jahrbuch der Schweiz, 53: 3470.Google Scholar
Mattila, H.R., and Otis, G.W. 2006 a. Influence of pollen diet in spring on development of honey bee (Hymenoptera: Apidae) colonies. Journal of Economic Entomology, 99: 604613.CrossRefGoogle ScholarPubMed
Mattila, H.R., and Otis, G.W. 2006 b. The effects of pollen availability during larval development on the behaviour and physiology of spring-reared honey bee workers. Apidologie, 37: 533546.CrossRefGoogle Scholar
Mattila, H.R. and Otis, G.W. 2007. Dwindling pollen resources trigger the transition to broodless populations of long-lived honey bees each autumn. Ecological Entomology, 32. In press.CrossRefGoogle Scholar
Mattila, H.R., Harris, J.L., and Otis, G.W. 2001. Timing of production of winter bees in honey bee (Apis mellifera) colonies. Insectes Sociaux, 48: 8893.CrossRefGoogle Scholar
Maurizio, A. 1950. The influence of pollen feeding and brood rearing on the length of life and physiological condition of the honeybee: preliminary report. Bee World, 31: 912.CrossRefGoogle Scholar
Maurizio, A. 1954. Pollenernährung und Leben-svorgänge bei der Honigbiene (Apis mellifica L.). Landwirtschaftliches Jahrbuch der Schweiz, 68: 115182.Google Scholar
Maurizio, A. 1959. Factors influencing the lifespan of bees. In Proceedings of the Ciba Foundation: symposium on the lifespan of animals. Edited by Wolstenholme, G.E.W. and O'Connor, M.. Churchill, London, United Kingdom. pp. 231243.Google Scholar
Maurizio, A. 1965. Untersuchungen über das Zuckerbild der Hämolymphe der Honigbiene (Apis mellifica L.). I. Das Zuckerbild des Blutes erwachsener Bienen. Journal of Insect Physiology, 11: 745763.CrossRefGoogle Scholar
SAS Institute Inc. 2004. SAS/STAT 9.1 user's guide. SAS Institute Inc., Cary, North Carolina.Google Scholar
Seeley, T.D. 1985. Honeybee ecology. Princeton University Press, Princeton, New Jersey.CrossRefGoogle Scholar
Seeley, T.D., and Visscher, P.K. 1985. Survival of honeybees in cold climates: the critical timing of colony growth and reproduction. Ecological Entomology, 10: 8188.CrossRefGoogle Scholar
Shehata, S.M., Townsend, G.F., and Shuel, R.W. 1981. Seasonal physiological changes in queen and worker honeybees. Journal of Apicultural Research, 20: 6978.CrossRefGoogle Scholar
Smith, M.V., and Adie, A. 1963. A new design in pollen traps. Canadian Bee Journal, 74: 4–5, 8.Google Scholar
Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J., and Klenk, D.C. 1985. Measurement of protein using bicinchonic acid. Analytical Biochemistry, 150: 7685.CrossRefGoogle Scholar
Winston, M.L. 1987. The biology of the honey bee. Harvard University Press, Cambridge, Massachusetts.Google Scholar