Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T09:55:14.664Z Has data issue: false hasContentIssue false

Mancozeb resistance patterns among Kampimodromus aberrans and Typhlodromus pyri (Acari: Phytoseiidae) strains from French vineyards

Published online by Cambridge University Press:  02 April 2012

Philippe Auger*
Affiliation:
Ecole Nationale Supérieure Agronomique / Institut National de la Recherche Agronomique, Unité d'Ecologie animale et Zoologie agricole, Laboratoire d'Acarologie, 2, Place Pierre Viala, 34060 Montpellier CEDEX 01, France
Romain Bonafos
Affiliation:
Ecole Nationale Supérieure Agronomique / Institut National de la Recherche Agronomique, Unité d'Ecologie animale et Zoologie agricole, Laboratoire d'Acarologie, 2, Place Pierre Viala, 34060 Montpellier CEDEX 01, France
Serge Kreiter
Affiliation:
Ecole Nationale Supérieure Agronomique / Institut National de la Recherche Agronomique, Unité d'Ecologie animale et Zoologie agricole, Laboratoire d'Acarologie, 2, Place Pierre Viala, 34060 Montpellier CEDEX 01, France
*
1Corresponding author (e-mail: [email protected]).

Abstract

Laboratory bioassays were carried out on two species of phytoseiid mites to investigate their resistance to the fungicide mancozeb. Susceptible and suspected resistant strains of Kampimodromus aberrans (Oudemans) and Typhlodromus pyri Scheuten were tested. Mancozeb resistance factors were low to moderate: they reached 6.3 and 11.7 for K. aberrans and T. pyri, respectively. Intrinsic toxicity of mancozeb was approximately 5–10-fold more pronounced in females of K. aberrans than in females of T. pyri. The female susceptibility pattern of the most resistant strain of K. aberrans was quite close to that of the most susceptible strain of T. pyri. The LC50 values for the most resistant strains of K. aberrans and T. pyri were 4.6 and 43 times higher, respectively, than the maximum field application rate of mancozeb recommended for control of downy mildew in vineyards. Using a diagnostic concentration, a limited survey in vine plots indicated that most of the K. aberrans strains we tested were susceptible to mancozeb, but a few consisted of both resistant and susceptible individuals. All strains of T. pyri collected in Burgundy were susceptible. Half of the T. pyri strains from Bordeaux were susceptible and the other half were mixed populations of resistant and susceptible individuals.

Résumé

Des essais de laboratoire ont été réalisés avec deux espèces de Phytoseiidae pour évaluer leur résistance à un fongicide, le mancozèbe. Des populations sensibles et des populations soupçonnées de résistance de Kampimodromus aberrans (Oudemans) et Typhlodromus pyri Scheuten ont été testées. Les coefficients de résistance sont faibles à modérés et atteignent 6,3 et 11,7 pour K. aberrans et T. pyri, respectivement. La toxicité intrinsèque du mancozèbe est 5 à 10 fois plus forte pour les femelles de K. aberrans que pour les femelles de T. pyri. La sensibilité au mancozèbe de la population de K. aberrans la plus résistante est comparable à celle de la population de T. pyri la plus sensible. Les CL50 des populations les plus résistantes de K. aberrans et de T. pyri sont obtenues respectivement avec des concentrations 4,6 et 43 fois supérieures à la dose maximale recommandée de mancozèbe pour lutter contre le mildiou de la vigne. Une enquête réalisée sur un nombre limité de parcelles de vigne, en utilisant une concentration diagnostique de mancozèbe, tend à montrer que la majorité des populations de K. aberrans testées sont sensibles à ce fongicide, seules quelques unes comportant des individus sensibles et des individus résistants en mélange. Toutes les populations de T. pyri échantillonnées en Bourgogne sont sensibles au mancozèbe. La moitié des populations échantillonnées dans le Bordelais est sensible, l'autre moitié correspond à des populations résistantes ou composées d'un mélange d'individus sensibles et résistants.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W.S. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265–7CrossRefGoogle Scholar
Angeli, G., Ioriatti, C. 1994. Susceptibility of two strains of Amblyseius andersoni Chant (Acari: Phytoseiidae) to dithiocarbamate fungicides. Experimental and Applied Acarology 18: 669–79CrossRefGoogle Scholar
Anonymous. 1995. Compte rendu interne des essais du Service de la Protection des Végétaux de Cognac. Biard, France: Service Régional de la Protection des Végétaux de Poitou-CharentesGoogle Scholar
Auger, P., Kreiter, S., Mattioda, H., Duriatti, A. 2004. Side effects of mancozeb on Typhlodromus pyri (Acari: Phytoseiidae) in vineyards: results of multi-year field trials and a laboratory study. Experimental and Applied Acarology 33: 203–13CrossRefGoogle Scholar
Blümel, S., Pertl, C., Bakker, F. 2000 a. Comparative trials on the effect of two fungicides on a predatory mite in the laboratory and in the field. Entomologia Experimentalis et Applicata 97: 321–30CrossRefGoogle Scholar
Blümel, S., Aldershof, S., Bakker, F.M., Baier, B., Boller, E., Brown, K., Bylemans, D., Candolfi, M.P., Huber, B., Linder, C., Louis, F., Müther, J., Nienstedt, K.M., Oberwalder, C., Reber, B., Schirra, K.J., Sterk, G., Ufer, A., Vogt, H. 2000 b. Guidance document to detect side effects of plant protection products on predatory mites (Acari: Phytoseiidae) under field conditions: vineyards and orchards. pp 145–58Google Scholar
in Candolfi, M.P., Blümel, S., Forster, R., Bakker, F.M., Grimm, C., Hassan, S.A., Heimbach, U., Mead-Briggs, M.A., Reber, B., Schmuck, R., Vogt, H. (Eds), Guidelines to evaluate side-effects of plant protection products to non-target arthropods. Gent, Belgium: International Organization for Biological and Integrated Control of Noxious Animals and Plants / West Palearctic Regional SectionGoogle Scholar
Bostanian, N.J., Thistlewood, H., Racette, G. 1998. Effect of five fungicides used in Quebec apple orchards on Amblyseius fallacis (Garman) (Phytoseiidae: Acari). Journal of Horticultural Science 73: 527–30Google Scholar
Croft, B.A. 1990. Arthropod biological agents and pesticides. New York: WileyGoogle Scholar
Finney, D.J. 1971. Probit analysis. 3rd edition. London: Cambridge University PressGoogle Scholar
Hassan, S.A., Albert, R., Bigler, F., Blaisinger, P., Bogenschutz, H., Boller, E., Brun, J., Chiverton, P., Edwards, P., Englert, W.D., Huang, P., Inglesfield, C., Naton, E., Oomen, P.A., Overmeer, W.P.J., Rieckmann, W., Samsøe Petersen, L., Stäubli, A., Tuset, J.J., Viggiani, G., Vansetswinkel, G. 1987. Results of the third joint pesticide testing programme carried out by the IOBC/WPRS-Working Group “Pesticides and Beneficial Organisms”. Journal of Applied Entomology 103: 92107CrossRefGoogle Scholar
Huffaker, C.B. 1948. An improved cage for work with small insects. Journal of Economic Entomology 41: 648–9CrossRefGoogle Scholar
Ioriatti, C., Pasqualini, E., Toniolli, A. 1992. Effect of the fungicide mancozeb and dithianon on mortality and reproduction of the predatory mite Amblyseius andersoni. Experimental and Applied Acarology 15: 109–16CrossRefGoogle Scholar
James, D.G., Rayner, M. 1995. Toxicity of viticultural pesticides to the predatory mites Amblyseius victoriensis and Typhlodromus doreenae. Plant Protection Quarterly 10: 99102Google Scholar
Kabir, M.K.H., Chapman, R.B., Penman, D.R. 1993. Miticide bioassays with spider mites (Acari: Tetranychidae): effect of test method, exposure period and mortality criterion on the precision of response estimate. Experimental and Applied Acarology 17: 695708CrossRefGoogle Scholar
Kreiter, S., Sentenac, G. 1993. Méthode CEB No. 167: Méthode d'étude des effets non intentionnels à moyen terme sur les Phytoseiidae (Typhlodromes) de la vigne des produits phytopharmaceutiques utilizés en traitement des parties aériennes. Paris: Commission des Essais Biologiques, Association Française de la Protection des PlantesGoogle Scholar
Kreiter, S., Sentenac, G., Barthes, D., Auger, P. 1998. Toxicity of four fungicides to the predaceous mite Typhlodromus pyri (Acari: Phytoseiidae). Journal of Economic Entomology 91: 802–11CrossRefGoogle Scholar
Kreiter, S., Tixier, M.S., Auger, P., Muckensturm, N., Sentenac, G., Doublet, B., Weber, M. 2000. Phytoseiid mites of vineyards in France (Acari: Phytoseiidae). Acarologia 41: 7796Google Scholar
Kreiter, S., Tixier, M.S., Croft, B.A., Auger, P., Barret, D. 2002. Plants and leaf characteristics influencing the predaceous mite Kampimodromus aberrans (Acari: Phytoseiidae) in habitats surrounding vineyards. Environmental Entomology 31: 648–60CrossRefGoogle Scholar
Mathys, G. 1958. The control of phytophagous mites in Swiss vineyard by Typhlodromus species. pp 607–10 in Becker, E.C. (Ed), Proceedings of the Tenth International Congress of Entomology, Montreal, Quebec, 17–25 August 1956. Volume 4. Ottawa, Ontario: Mortimer LtdGoogle Scholar
Miles, M., Green, E. 2002. Field studies to determine the effects of the fungicide Mancozeb and Dinocap on predatory mites in orchards and vineyards in Europe. pp 297302in Proceedings of the British Crop Protection Committee Conference Pests and Diseases, Brighton, United Kingdom, 18–21 November 2002. Farnham, United Kingdom: The British Crop Protection CouncilGoogle Scholar
Overmeer, W.P.J. 1985. 2.1.4.1. Rearing and handling. pp 161–70 in Helle, W., Sabelis, M.W. (Eds), Spider mites, their biology, natural enemies and control. Volume 1B. Amsterdam: Elsevier ScienceGoogle Scholar
Posenato, G. 1994. Populazioni di Amblyseius aberrans (Oud.) resistenti ad ester fosforici e ditiocarbammati. L'Informatore Agrario 50: 41–3Google Scholar
Potter, C. 1952. An improved apparatus for applying direct sprays and surface films with data on the electrostatic charge on atomized spray fluids. Annals of Applied Biology 39: 128CrossRefGoogle Scholar
Robertson, J.L., Preisler, H.K. 1992. Pesticide bioassays with arthropods. Boca Raton, Florida: CRC PressGoogle Scholar
Sakuma, M. 1998. Probit analysis of preference data. Applied Entomology and Zoology 33: 339–47CrossRefGoogle Scholar
Schausberger, P. 1997. Inter- and intraspecific predation on immatures by adult females in Euseius finlandicus, Typhlodromus pyri and Kampimodromus aberrans (Acari: Phytoseiidae). Experimental and Applied Acarology 21: 131–50CrossRefGoogle Scholar
Sentenac, G., Bonafos, R., Ruelle, B., Coulon, T., Escaffre, P., Auger, P., Kreiter, S. 2002. Effets non intentionnels de certains produits phytopharmaceutiques sur Typhlodromus pyri, Kampimodromus aberrans et Phytoseius plumifer. Phytoma 555: 50–5Google Scholar
StatSoft Inc. 2001. STATISTICA. Logiciel d'analyse de données [computer program]. Version 6. Maisons Alfort, France: StatSoft IncGoogle Scholar
Vettorello, G., Girolami, V. 1992. Popolazioni di Amblyseius aberrans (Oud.) tolleranti i ditiocarbammati. L'Informatore Agrario 48: 111–2Google Scholar
Zacharda, M., Hluchý, M. 1991. Long-term residual efficacy of commercial formulations of 16 pesticides to Typhlodromus pyri scheuten (Acari: Phytoseiidae) inhabiting commercial vineyards. Experimental and Applied Acarology 13: 2740CrossRefGoogle Scholar