Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T03:58:39.420Z Has data issue: false hasContentIssue false

LINEATIN ENANTIOMER PREFERENCE, FLIGHT PERIODS, AND EFFECT OF PHEROMONE CONCENTRATION AND TRAP LENGTH ON THREE SYMPATRIC SPECIES OF TRYPODENDRON (COLEOPTERA: SCOLYTIDAE)

Published online by Cambridge University Press:  31 May 2012

B.S. Lindgren*
Affiliation:
College of Science and Management, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia, Canada V2N 4Z9
S.E.R. Hoover
Affiliation:
College of Science and Management, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia, Canada V2N 4Z9
A.M. MacIsaac
Affiliation:
College of Science and Management, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia, Canada V2N 4Z9
C.I. Keeling
Affiliation:
Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
K.N. Slessor
Affiliation:
Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
*
1 Author to whom all correspondence should be addressed (E-mail: [email protected]).

Abstract

The effects of lineatin enantiomer ratios, lineatin release rate, and trap length on catches and the flight periods of three sympatric species of Trypodendron Stephens were investigated in field bioassays using multiple-funnel traps. The ambrosia beetle, Trypodendron betulae Swaine, was caught in similar numbers in baited traps and blank control traps, showing that this species does not respond to lineatin. Our results confirmed that Trypodendron lineatum (Olivier) is attracted only to (+)-lineatin. Trypodendron rufitarsus (Kirby) and Trypodendron retusum (LeConte) were shown to utilize lineatin and like T. lineatum were caught only when (+)-lineatin was present. These results indicate that lineatin does not govern reproductive isolation among these three species. There was no effect by (+)-lineatin release rate within the range tested. The flight of T. rufitarsus commenced earlier and ceased before the peak of the T. lineatum flight, suggesting that temporal separation may be an important component of reproductive isolation between these two species. The flight period of T. retusum was similar to that of T. lineatum. Host odours may aid in reproductive isolation of these two species. Enantiomer blend did not significantly affect sex ratio in any species; however, sex ratio differed among species, indicating that different species responded differently to the traps or that natural sex ratios differ. Catches of T. rufitarsus and T. retusum increased with trap length when pheromone release per trap was held constant and when release was held constant relative to trap length. Trap length and release rate did not affect sex ratio.

Résumé

Les effets des proportions d’un énantiomère, la linéatine, du taux de libération de la linéatine, de la longueur des pièges et des périodes de vols sur la capture de trois espèces de Trypodendron Stephens ont été étudiés au cours d’expériences en nature au moyen de pièges à entonnoirs multiples. Des Scolytes rayés du bouleau, Trypodendron betulae Swaine ont été capturés en nombres égaux dans les pièges garnis et dans les pièges témoins non garnis, ce qui indique que l’espèce ne répond pas à la linéatine. Nos résultats confirment que Trypodendron lineatum (Olivier) est attiré seulement par la (+)-linéatine. Trypodendron rufitarsus (Kirby) et Trypodendron retusum (LeComte) utilisent tous deux la linéatine et, comme T. lineatum, ne réagissent qu’en présence de (+)-linéatine. Ces résultats indiquent que ce n’est pas la linéatine qui régit l’isolement reproducteur de ces trois espèces. Le taux de libération de la (+)-linéatine n’a pas eu d’effet dans l’étendue des taux vérifiée. Le vol de T. rufitarsus commence plus tôt et cesse avant la période de vol la plus active de T. lineatum, ce qui semble indiquer que la séparation dans le temps est probablement une composante importante de l’isolement reproducteur de ces deux espèces. La période de vol de T. retusum est semblable à celle de T. lineatum. L’odeur des hôtes peut contribuer à l’isolement reproducteur de ces deux espèces. Le mélange d’énantiomères n’a pas affecté significativement le rapport mâles : femelles chez aucune de ces espèces, ce qui indique que les différentes espèces réagissent différemment aux pièges ou que les rapports mâles : femelles en nature sont différents. Les captures de T. rufitarsum et de T. retusum augmentaient avec la longueur des pièges lorsque le taux de libération de la phéromone dans chaque piège était maintenu constant ou que le taux de libération était maintenu constant par rapport à la longueur des pièges. La longueur des pièges et le taux de libération n’affectent pas le rapport mâles : femelles.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bakke, A. 1983. Dosage response of the ambrosia beetle Trypodendron lineatum (Olivier) (Coleoptera, Scolytidae) to semiochemicals. Zeitschrift für angewandte Entomologie 95: 158–61CrossRefGoogle Scholar
Borden, J.H. 1988. The striped ambrosia beetle. pp. 579–96 in Berryman, A.A. (Ed), Dynamics of forest insect populations. New York: Plenum PressCrossRefGoogle Scholar
Borden, J.H., Fockler, C.E. 1973. Emergence and orientation behavior of brood Trypodendron lineatum (Coleoptera: Scolytidae). Journal of the Entomological Society of British Columbia 70: 34–8Google Scholar
Borden, J.H., King, C.J., Lindgren, B.S., Chong, L., Gray, D.R., Oehlschlager, A.C., Slessor, K.N., Pierce, H.D. Jr. 1982. Variation in response of Trypodendron lineatum from two continents to semiochemicals and trap form. Environmental Entomology 11: 403–8CrossRefGoogle Scholar
Borden, J.H., Chong, L.J., Savoie, A., Wilson, I.M. 1997. Responses to green leaf volatiles in two biogeoclimatic zones by striped ambrosia beetle, Trypodendron lineatum. Journal of Chemical Ecology 23: 2479–91CrossRefGoogle Scholar
Bright, D.E. 1976. The bark beetles of Canada and Alaska. Canada Department of Agriculture Publication 1576Google Scholar
Byers, J.A. 1989. Chemical ecology of bark beetles. Experientia 45: 271–83CrossRefGoogle Scholar
Hoover, S.E.R., Lindgren, B.S., Keeling, C.I., Slessor, K.N. 2000. Enantiomer preference of Trypodendron lineatum (Olivier) (Coleoptera: Scolytidae), and effect of pheromone dose and trap length on its response to lineatin-baited traps in interior British Columbia. Journal of Chemical Ecology 26: 667–77CrossRefGoogle Scholar
Klimetzek, D., Vité, J.P., König, E. 1981. Response of European Trypodendron species to natural and synthetic attractants. Allgemeine Forst- und Jagd-Zeitung 152: 6470Google Scholar
Lindgren, B.S. 1983. A multiple funnel trap for scolytid beetles (Coleoptera). The Canadian Entomologist 115: 299302CrossRefGoogle Scholar
Lindgren, B.S. 1990. Ambrosia beetles. Journal of Forestry 88: 811Google Scholar
Lindgren, B.S., Borden, J.H. 1983. Survey and mass trapping of ambrosia beetles (Coleoptera: Scolytidae) in timber processing areas on Vancouver Island. Canadian Journal of Forest Research 13: 481–93CrossRefGoogle Scholar
Lindgren, B.S., Fraser, R.G. 1994. Control of ambrosia beetle damage by mass trapping at a dryland log sorting area in British Columbia. Forestry Chronicle 70: 159–63CrossRefGoogle Scholar
Lindgren, B.S., Borden, J.H., Chong, L., Friskie, L.M., Orr, D.B. 1983. Factors influencing the efficiency of pheromone-baited traps for three species of ambrosia beetles (Coleoptera: Scolytidae). The Canadian Entomologist 115: 303–13CrossRefGoogle Scholar
McLean, J.A., Borden, J.H. 1979. An operational pheromone-based suppression program for an ambrosia beetle, Gnathotrichus sulcatus, in a commercial sawmill. Journal of Economic Entomology 72: 165–72CrossRefGoogle Scholar
Nijholt, W.W. 1978. Ambrosia beetle: a menace to the forest industry. Canadian Forestry Service Pacific Forest Research Centre Report BC–P–25Google Scholar
Salom, S.M., McLean, J.A. 1990. Flight and landing behavior of Trypodendron lineatum (Coleoptera: Scolytidae) in response to different semiochemicals. Journal of Chemical Ecology 16: 2589–605CrossRefGoogle ScholarPubMed
Salom, S.M., McLean, J.A. 1991. Environmental influences on dispersal of Trypodendron lineatum (Coleoptera: Scolytidae). Environmental Entomologist 20: 565–76CrossRefGoogle Scholar
Shore, T.L., Lindgren, B.S. 1996. Effect of ethanol and α-pinene on response of ambrosia beetle, Trypodendron lineatum, to lineatin-baited funnel and drainpipe traps. Journal of Chemical Ecology 22: 2187–96CrossRefGoogle ScholarPubMed
Wood, S.L. 1982. The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Memoirs of the Great Basin Naturalist 6Google Scholar
Zar, J.H. 1984. Biostatistical analysis. 2nd ed. Englewood Cliffs: Prentice-Hall, Inc.Google Scholar