Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T16:30:48.508Z Has data issue: false hasContentIssue false

Life-history parameters and population dynamics of Ericaphis fimbriata (Hemiptera: Aphididae) on blueberry, Vaccinium corymbosum1

Published online by Cambridge University Press:  02 April 2012

D.A. Raworth*
Affiliation:
Agriculture and Agri-Food Canada, P.O. Box 1000, Agassiz, British Columbia, Canada V0M 1A0
Daynika Schade
Affiliation:
Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
*
2 Corresponding author (e-mail: [email protected]).

Abstract

Development rate and age-specific fecundity and survival of Ericaphis fimbriata (Richards) virginoparae were determined during the spring on young leaves of blueberry, Vaccinium corymbosum L., as functions of temperature. The same traits were measured during the summer and the autumn on both young and mature leaves at 21.2 °C. The temperature threshold for development was 4.1 ± 0.5 °C (SE). For apterae, development time from birth to adult was 157.7 ± 5.9 day-degrees (dd). Proportional lengths of instars I–IV were 0.16, 0.14, 0.34, and 0.36, respectively. Adult life was 434.5 ± 17.5 dd and proportional lengths of the pre-reproductive, reproductive, and post-reproductive periods were 0.05, 0.74, and 0.21, respectively. Mean fecundity was 23.6 ± 1.0 nymphs per female. Mean survival was 602.9 ± 14.6 dd, and more than 80% of apterae survived the peak reproductive period. Alate fecundity was 16.5 ± 3.2 nymphs per female and alate survival was 460.9 ± 47.5 dd. Leaf type and season of measurement had significant effects on development time and fecundity: development time was 158.2 dd (+4.9 upper asymmetric SE) on young V. corymbosum ‘Duke’ leaves in the spring but 312.4 dd (–16.9 lower asymmetric SE) on mature ‘Bluecrop’ leaves, the dominant leaf type, from a commercial field in the summer. Fecundity for the respective leaf types and seasons was 16.7 (–1.6) and 1.4 (+0.5) nymphs per female. From summer to autumn, development time increased on young ‘Duke’ and ‘Bluecrop’ leaves but decreased on mature ‘Bluecrop’ leaves; fecundity decreased on young ‘Duke’ and ‘Bluecrop’ leaves but remained at low levels on mature ‘Bluecrop’ leaves. A simulation model showed that seasonal changes in development time and fecundity were capable of reducing population growth rates to near zero depending on aphid distribution with respect to young and mature leaves. The results support a combined bottom-up and top-down view of aphid population regulation and suggest that control efforts should focus on the spring, when the population growth rate is maximal.

Résumé

Nous avons déterminé le taux de développement, la fécondité en fonction de l'âge et la survie en fonction de l'âge des femelles virginipares d'Ericaphis fimbriata (Richards) au printemps sur de jeunes feuilles de l'airelle Vaccinium corymbosum L. en regard de la température. Nous avons répété les mêmes mesures en été et en automne sur des feuilles jeunes et matures à 21,2 °C. Le seuil thermique du développement est de 4,1 ± 0,5 °C (ET). Chez les aptères, la durée du développement de la naissance à l'état adulte est de 157,7 ± 5,9 jours-degrés (jd). Les durées proportionnelles des stades I–IV sont respectivement de 0,16, 0,14, 0,34 et 0,36. La vie adulte dure 434,5 ± 17,5 jd et les durées proportionnelles des périodes pré-reproductive, reproductive et post-reproductive sont respectivement de 0,05, 0,74 et 0,21. La fécondité moyenne est de 23,6 ± 1,0 larves par femelle. La survie moyenne est de 602,9 ± 14,6 jd et plus de 80 % des individus survivent à la période de reproduction maximale. La fécondité des femelles ailées est de 16,5 ± 3,2 larves par femelle et leur survie est de 460,9 ± 47,5 jd. Le type de feuille et la saison dans laquelle se font les mesures ont des effets significatifs sur la durée du développement et la fécondité; la durée du développement est de 158,2 jd (+4,9, ET asymétrique supérieure) sur de jeunes feuilles « Duke » de V. corymbosum au printemps, mais de 312,4 jd (–16,9, ET asymétrique inférieure) sur des feuilles matures « Bluecrop », le type dominant de feuilles, dans une bleuetière commerciale en été. Les fécondités sur les deux types de feuilles et les deux saisons sont respectivement de 16,7 (–1,6) et de 1,4 (+0,5) larves par femelle. De l'été à l'automne, la durée du développement augmente sur les jeunes feuilles de types « Duke » et « Bluecrop », mais elle diminue sur les feuilles matures « Bluecrop »; la fécondité diminue sur les jeunes feuilles « Duke » et « Bluecrop », mais elle reste faible sur les feuilles matures « Bluecrop ». Une modèle de simulation montre que les changements saisonniers de durée du développement et de fécondité sont capables de réduire les taux de croissance de la population à presque rien, selon la répartition des pucerons entre les feuilles jeunes et matures. Ces résultats incitent à invoquer une combinaison de contrôles ascendants et de contrôles descendants pour expliquer la régulation de la population et indiquent que les efforts de contrôle devraient s'exercer au printemps au moment où le taux de croissance de la population est maximal.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Pacific Agri-Food Research Centre contribution 716.

References

Asin, L., and Pons, X. 2001. Effect of high temperature on the growth and reproduction of corn aphids (Homoptera: Aphididae) and implications for their population dynamics on the northeastern Iberian peninsula. Environmental Entomology, 30: 11271134.CrossRefGoogle Scholar
Bristow, P.R., Martin, R.R., and Windom, G.E. 2000. Transmission, field spread, cultivar response, and impact on yield in highbush blueberry infected with Blueberry scorch virus. Phytopathology, 90: 474479.Google Scholar
Campbell, A., Frazer, B.D., Gilbert, N., Gutierrez, A.P., and Mackauer, M. 1974. Temperature requirements of some aphids and their parasites. Journal of Applied Ecology, 11: 431438.CrossRefGoogle Scholar
Charnov, E., Frazer, B.D., Gilbert, N., and Raworth, D. 1976. Fishing for aphids: the exploitation of a natural population. Journal of Applied Ecology, 13: 379389.Google Scholar
Clutton-Brock, T.H., and Coulson, T. 2002. Comparative ungulate dynamics: the devil is in the detail. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 357: 12851298.Google Scholar
Day, K.R., Armour, H., and Docherty, M. 2004. Population responses of a conifer-dwelling aphid to seasonal changes in its host. Ecological Entomology, 29: 555565.Google Scholar
Dixon, A.F.G. 2005. Insect herbivore–host dynamics. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Frazer, B.D., and Gilbert, N. 1976. Coccinellids and aphids: a quantitative study of the impact of adult ladybirds (Coleoptera: Coccinellidae) preying on field populations of pea aphids (Homoptera: Aphididae). Journal of the Entomological Society of British Columbia, 73: 3356.Google Scholar
Gilbert, N. 1988. Control of fecundity in Pieris rapae. V. Comparisons between populations. Journal of Animal Ecology, 57: 395410.CrossRefGoogle Scholar
Gilbert, N., and Raworth, D.A. 1998. Polymorphic fundatrices in thimbleberry aphid — ecology and maintenance. Researches in Population Ecology, 40: 243247.CrossRefGoogle Scholar
Gilbert, N., Gutierrez, A.P., Frazer, B.D., and Jones, R.E. 1976. Ecological relationships. W.H. Freeman and Co., Reading, Massachusetts.Google Scholar
Karley, A.J., Parker, W.E., Pitchford, J.W., and Douglas, A.E. 2004. The mid-season crash in aphid populations: why and how does it occur? Ecological Entomology, 29: 383388.Google Scholar
Kim, J.-S., and Kim, T.-H. 2004. Temperature dependent fecundity and life table parameters of Aphis gossypii Glover (Homoptera: Aphididae) on cucumber plants. Korean Journal of Applied Entomology, 43: 211215.Google Scholar
Lewontin, R.C. 1965. Selection for colonizing ability. In The genetics of colonizing species. Proceedings of the First International Union of Biological Sciences Symposium on General Biology, Asilomar, California, 12–16 February 1964. Edited by Barker, H.G. and Stebbins, G.L.. Academic Press, New York. pp. 7791.Google Scholar
Liu, T.-X., and Yue, B. 2001. Comparison of some life history parameters between alate and apterous forms of turnip aphid (Homoptera: Aphididae) on cabbage under constant temperatures. Florida Entomologist, 84: 2392421.CrossRefGoogle Scholar
McCornack, B.P., Ragsdale, D.W., and Venette, R.C. 2004. Demography of soybean aphid (Homoptera: Aphididae) at summer temperatures. Journal of Economic Entomology, 97: 854861.Google Scholar
Montllor, C.B., Campbell, B.C., and Mittler, T.E. 1990. Responses of Schizaphis graminum (Homoptera: Aphididae) to leaf excision in resistant and susceptible sorghum. Annals of Applied Biology, 116: 189198.CrossRefGoogle Scholar
Raworth, D.A. 1984. Population dynamics of the cabbage aphid, Brevicoryne brassicae (Homoptera: Aphididae), at Vancouver, British Columbia. II. Development, fecundity, and longevity. The Canadian Entomologist, 116: 871878.Google Scholar
Raworth, D.A. 1994. Estimation of degree-days using temperature data recorded at regular intervals. Environmental Entomology, 23: 893899.Google Scholar
Raworth, D.A. 2004. Ecology and management of Ericaphis fimbriata (Hemiptera: Aphididae) in relation to the potential for spread of Blueberry scorch virus. The Canadian Entomologist, 136: 711718.Google Scholar
Remaudière, G., and Remaudière, M. 1997. Catalogue of the world's Aphididae. INRA, Paris.Google Scholar
Robinson, J. 1992. Modes of resistance in barley seedlings to six aphid (Homoptera: Aphididae) species. Journal of Economic Entomology, 85: 25102515.Google Scholar
SAS Institute Inc. 1990. SAS/STAT user's guide. Version 6. SAS Institute Inc., Cary, North Carolina.Google Scholar
Scholze, P. 1992. The body growth of aphids (Homoptera, Aphididae) as an expression of the nutritional supply of the host plant. II. Studies on stems of excised leaves of Tropaeolum majus L. Beitrage zur Entomologie, 42: 323329.Google Scholar
Southwood, T.R.E. 1966. Ecological methods with particular reference to the study of insect populations. Methuen & Co., London.Google Scholar
Wearing, C.H. 1972. Responses of Myzus persicae and Brevicoryne brassicae to leaf age and water stress in Brussels sprouts grown in pots. Entomologia Experimentalis et Applicata, 15: 6180.CrossRefGoogle Scholar
Wegener, L., MacDonald, L., Sweeney, M., Martin, R.R., and Punja, Z.K. 2003. Epidemiology and strain identification of Blueberry scorch virus in British Columbia. Canadian Journal of Plant Pathology, 25: 114. [Abstr.]Google Scholar
Xia, J.Y., van der Werf, W., and Rabbinge, R. 1999. Influence of temperature on bionomics of cotton aphid, Aphis gossypii, on cotton. Entomologia Experimentalis et Applicata, 90: 2535.Google Scholar