Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T13:58:52.940Z Has data issue: false hasContentIssue false

THE LIFE CYCLE AND ULTRASTRUCTURE OF MALAMEBA LOCUSTAE (KING AND TAYLOR) (AMOEBIDAE) IN THE MIGRATORY GRASSHOPPER MELANOPLUS SANGUINIPES (F.) (ACRIDIDAE)1,2

Published online by Cambridge University Press:  31 May 2012

Lorraine Braun
Affiliation:
Agriculture Canada Research Station, 107 Science Crescent, Saskatoon, Saskatchewan, Canada S7N 0X2
Al B. Ewen
Affiliation:
Agriculture Canada Research Station, 107 Science Crescent, Saskatoon, Saskatchewan, Canada S7N 0X2
Cedric Gillott
Affiliation:
Agriculture Canada Research Station, 107 Science Crescent, Saskatoon, Saskatchewan, Canada S7N 0X2

Abstract

The life history and ultrastructure of the protozoan Malameba locustae (King and Taylor) were studied in the migratory grasshopper Melanoplus sanguinipes (F.) using feeding and injection studies. Insects fed cysts developed infection in the Malpighian tubules 5–6 days later; no trophozoites were observed in haemolymph samples taken 2–20 days post-feeding. After excystment, a few trophozoites entered the midgut epithelium and many were located near the basement membrane of the epithelial cells, where they appeared to degenerate. Trophozoites were not seen to divide in the midgut epithelium, and apparently did not damage this tissue. Trophozoites injected directly into the haemocoel could not be recovered even 4 h after injection, and the Malpighian tubules did not become infected. It was concluded that trophozoites did not penetrate the midgut to enter the haemocoel or move through the haemocoel to infect the Malpighian tubules, but instead probably entered the tubules directly from the gut. Trophozoite ultrastructure in midgut and Malpighian tubules, and cyst wall deposition were described.

Résumé

Le cycle biologique et l’ultrastructure du protozoaire Malameba locustae (King et Taylor) ont été étudiés chez le petit criquet voyageur, Melanoplus sanguinipes (F.), à l’aide d’essais d’alimentation et d’injection. Les criquets nourris de kystes ont développé une infection des tubes de Malpighi 5–6 jours plus tard; on n’observe aucun trophozoïte dans les échantillons d’hémolymphe prélevés 2–20 jours après l’ingestion. Après rupture des kystes, quelques trophozoïtes ont pénétré dans l’épithélium de l’intestin moyen et beaucoup se sont logés près de la membrane basale des cellules épithéliales où ils semblaient dégénérer. On n’a pas vu de trophozoïtes se diviser dans l’épithélium de l’intestin moyen et ils ne semblent pas avoir endommagé ce tissu. Les trophozoïtes injectés directement dans l’hémocèle ne pouvaient être récupérés, même 4 h après l’injection, et n’ont pu infecter les tubes de Malpighi. Les auteurs concluent que les trophozoïtes n’ont pas pénétré dans l’intestin moyen pour entrer dans l’hémocèle ou migrer dans celui-ci pour aller infecter les tubes de Malpighi, mais ont probablement pénétré directement dans les tubes depuis l’intestin. Ils décrivent l’ultrastructure des trophozoïtes dans l’intestin moyen et les tubes de Malpighi, ainsi que la rupture des parois des kystes.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beams, H.W., Tahmisian, T.N., and Devine, R.L.. 1955. Electron microscope studies on the cells of the Malpighian tubules of the grasshopper (Orthoptera, Acrididae). J. biophys. biochem. Cytol. 1: 197202.Google Scholar
Braun, L. 1987. The life history of Malameba locustae (King and Taylor) in the migratory grasshopper Melanoplus sanguinipes (F.). M.Sc. thesis, Biology Dept., Univ. of Saskatchewan, Saskatoon.Google Scholar
Evans, W.A., and Elias, R.G.. 1970. The life cycle of Malamoeba locustae (King et Taylor) in Locusta migratoria migratorioides (R. et F.). Acta Protozool. 7: 229241.Google Scholar
Ewen, A.B., and Hinks, C.F.. 1986. Rearing a non-diapause strain of the migratory grasshopper, Melanoplus sanguinipes (F.) (Orthoptera: Acrididae) in the laboratory. Proc. Pan-Am. Acrid. Soc. 4: 169173.Google Scholar
Glauert, A.M. 1975. Practical Methods in Electron Microscopy, Vol. 3, Part 1. North-Holland/Elsevier, Amsterdam.Google Scholar
Hanrahan, S.A. 1975. Ultrastructure of Malameba locustae (K. & T.), a protozoan parasite of locusts. Acrida 4: 237249.Google Scholar
Hanrahan, S.A. 1976. Further evidence for regional differentiation of locust Malpighian tubule. Proc. electron micros. Soc. S. Afr. 6: 3132.Google Scholar
Harry, O.G. 1965. Studies on the early development of the Eugregarine Gregarina garnhami. J. Protozool. 12: 296305.CrossRefGoogle ScholarPubMed
Harry, O.G., and Finlayson, L.H.. 1976. The life-cycle, ultrastructure and mode of feeding of the locust amoeba Malpighamoeba locustae. Parasitology 72: 127135.Google Scholar
Henry, J.E. 1968. Malameba locustae and its antibiotic control in grasshopper cultures. J. invert. Path. 11: 224233.Google Scholar
Henry, J.E., and Oma, E.A.. 1975. Sulphonamide antibiotic control of Malameba locustae (King & Taylor) and its effect on grasshoppers. Acrida 4: 217226.Google Scholar
Hinks, C.F., and Ewen, A.B.. 1986. Pathological effects of the parasite Malameba locustae in males of the migratory grasshopper Melanoplus sanguinipes and its interaction with the insecticide, cypermethrin. Entomologia exp. appl. 42: 3944.Google Scholar
Hubschman, J.H. 1962. A simplified azan process well suited for crustacean tissue. Stain Technol. 37: 379380.Google Scholar
King, R.L., and Taylor, A.B.. 1936. Malpighamoeba locustae, n. sp. (Amoebidae), a protozoan parasitic in the Malpighian tubes of grasshoppers. Trans. Am. microsc. Soc. 55: 610.CrossRefGoogle Scholar
Kudo, R.R. 1977. Protozoology, 5th ed. C.C. Thomas.Google Scholar
Larsson, R. 1976. Insect pathological investigations on Swedish Thysanura. I. Observations on Malamoeba locustae (Protozoa, Amoebidae) from Lepisma saccharina (Thysanura, Lepismatidae). J. invert. Path. 28: 4346.Google Scholar
Lillie, R.D. 1965. Histopathologic Technic and Practical Histochemistry, 3rd ed. McGraw-Hill.Google Scholar
Martoja, R. 1969. Données histopathologiques sur une amibiase d'Acridiens. C. R. Acad. Sci., Paris D 268: 24422445.Google Scholar
Martoja, R., and Ballan-Dufrançais, C.. 1984. The ultrastructure of the digestive and excretory organs. In King, R.C., and Akai, H. (Eds.), Insect Ultrastructure Plenum Press, New York.CrossRefGoogle Scholar
Mazuranich, P.C. 1975. Construction of a metal-framed cage for studies with grasshoppers. Acrida 4: 151154.Google Scholar
Papillon, M., and Cassier, P.. 1978. Perturbations morphologiques et physiologiques dues a la présence du protozoaire parasite Malameba locustae (K. et T.) chez Schistocerca gregaria (Forsk.). Acrida 7: 101114.Google Scholar
Pickford, R., and Randell, R.L.. 1969. A non-diapause strain of the migratory grasshopper, Melanoplus sanguinipes (Orthoptera: Acrididae). Can. Ent. 101: 894896.CrossRefGoogle Scholar
Tsubo, I., and Brandt, P.W.. 1962. An electron microscopic study of the Malpighian tubules of the grasshopper, Dissosteira carolina. J. Ultrastruct. Res. 6: 2835.Google Scholar
Venter, I.G. 1966. Egg development in the brown locust, Locustana pardalina (Walker), with special reference to the effect of infestation by Malameba locustae. S. Afr. J. agric. Sci. 9: 429434.Google Scholar
Weakley, B.S. 1981. A Beginner's Handbook in Biological Transmission Electron microscopy, 2nd ed. Churchill Livingstone.Google Scholar
Westphal, A. 1976. Protozoa. Blackie & Son Ltd.Google Scholar
Zizka, Z. 1984. Ultrastructure of the amoeba Malamoeba locustae. J. Protozool. 31: 54A (Abstract only).Google Scholar