Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T10:05:49.278Z Has data issue: false hasContentIssue false

Laboratory studies of the toxicity of spinosad and deltamethrin to Phyllotreta cruciferae (Coleoptera: Chrysomelidae)1

Published online by Cambridge University Press:  02 April 2012

R.H. Elliott*
Affiliation:
Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, Saskatchewan, Canada S7N 0X2
M.C. Benjamin
Affiliation:
Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan, Canada S7N 5E2
C. Gillott
Affiliation:
Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan, Canada S7N 5E2
*
2 Corresponding author (e-mail: [email protected]).

Abstract

Laboratory experiments were conducted to evaluate the contact and oral toxicity of commercial formulations of spinosad and deltamethrin to adults of the crucifer flea beetle, Phyllotreta cruciferae (Goeze). Method of exposure had a significant effect on flea beetle mortality and feeding damage to canola seedlings. Topical treatment of flea beetles with deltamethrin or different concentrations of spinosad resulted in significantly lower mortality and higher feeding damage than exposure to treated canola cotyledons. Results indicated that spinosad was more toxic by ingestion than by topical contact. Mortality from treated cotyledons was significantly higher with 60 ppm deltamethrin than with 80 or 120 ppm spinosad after 24 h exposure but not after 120 h exposure. Delayed mortality in the spinosad treatments did not result in high feeding damage; damage after 120 h was not significantly different in the spinosad and deltamethrin treatments. Low concentrations of spinosad (40 ppm) strongly inhibited feeding activity within 24 h after exposure. Mortality from spinosad was higher after beetles were exposed to treated cotyledons for 120 h than for 24 h. Mortality from spinosad, but not deltamethrin, was significantly higher at 25 °C than at 15 °C. An ionic surfactant, polyethylenimine, increased the toxicity of 40 ppm spinosad. Our study suggests that spinosad has potential for use as an insecticide against crucifer flea beetles on canola.

Résumé

Nous avons mené des expériences de laboratoire afin de mesurer la toxicité de contact et la toxicité orale de préparations commerciales de spinosad et de deltaméthrine chez les adultes de l'altise des crucifères, Phyllotreta cruciferae (Goeze). Les méthodes d'exposition à l'insecticide ont un effet significatif sur la mortalité des altises et sur le dommage causé par le broutement sur les jeunes pousses de canola. Un traitement topique des altises avec de la deltaméthrine ou avec différentes concentrations de spinosad cause une mortalité significativement plus basse et des dommages de broutement plus importants qu'une exposition à des cotylédons de canola traités. Nos résultats indiquent que le spinosad est plus toxique à l'ingestion qu'au contact topique. La mortalité causée par les cotylédons traités avec 60 ppm de deltaméthrine est significativement plus élevée qu'avec du spinosad à 80 ou 120 ppm après une exposition de 24 h, mais non après 120 h. La mortalité retardée lors de l'utilisation de spinosad ne résulte pas en un dommage important dû au broutement; les dommages après 120 h ne diffèrent pas significativement lors de traitements au spinosad et à la deltaméthrine. De faibles concentrations de spinosad (40 ppm) inhibent fortement les activités alimentaires en moins de 24 h après l'exposition. La mortalité due au spinosad est plus importante après que les coléoptères aient été exposés aux cotylédons traités pendant 120 h qu'après 24 h. La mortalité due au spinosad, mais pas celle due à la deltaméthrine, est significativement plus importante à 25 °C qu'à 15 °C. Un surfactant ionique, la polyéthylènimine, augmente la toxicité du spinosad à 40 ppm. Notre étude indique que le spinosad peut potentiellement servir d'insecticide pour la lutte contre l'altise des crucifères sur le canola.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Saskatoon Research Centre Contribution 1699.

References

Amarasekare, K.G., and Edelson, J.V. 2004. Effect of temperature on efficacy of insecticides to differential grasshopper (Orthoptera: Acrididae). Journal of Economic Entomology, 97: 15951602.CrossRefGoogle ScholarPubMed
Anonymous. 1997. Flea beetle management for canola, rapeseed and mustard in the northern Great Plains. Sustainable agriculture facts. Growing for tomorrow. Agriculture and Agri-Food Canada. 6 p.Google Scholar
Buntin, G.D., Flanders, K.L., Slaughter, R.W., and DeLamar, Z.D. 2004. Damage loss assessment and control of the cereal leaf beetle (Coleoptera: Chrysomelidae) in winter wheat. Journal of Economic Entomology, 97: 374382.CrossRefGoogle ScholarPubMed
Burgess, L. 1977. Flea beetles (Coleoptera: Chrysomelidae) attacking rape crops in the Canadian prairie provinces. The Canadian Entomologist, 109: 2132.CrossRefGoogle Scholar
Elzen, G.W. 2001. Lethal and sublethal effects of insecticide residues on Orius insidiosus (Hemiptera: Anthocoridae) and Geocoris punctipes (Hemiptera: Lygaeidae). Journal of Economic Entomology, 94: 5559.CrossRefGoogle ScholarPubMed
Ester, A., de Putter, H., and van Bilsen, J.G.P.M. 2003. Filmcoating the seed of cabbage (Brassica oleracea L. convar. Capitata L.) and cauliflower (Brassica oleracea L. var. Botrytis L.) with imidacloprid and spinosad to control insect pests. Crop Protection, 22: 761768.CrossRefGoogle Scholar
Fang, L., and Subramanyam, B. 2003. Activity of spinosad against adults of Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) is not affected by wheat temperature and moisture. Journal of the Kansas Entomological Society, 76: 529532.Google Scholar
Huang, F., Subramanyam, B., and Toews, M.D. 2004. Susceptibility of laboratory and field strains of four stored-product insect species to spinosad. Journal of Economic Entomology, 97: 21542159.CrossRefGoogle ScholarPubMed
Igrc, J., Barcic, J., Dobrincic, R., and Maceljski, M. 1999. Effect of insecticides on the Colorado potato beetles resistant in OP, OC and P insecticides. Journal of Pest Science, 72: 7680.Google Scholar
Kinoshita, G.B., Svec, H.J., Harris, C.R., and McEwen, F.L. 1979. Biology of the crucifer flea beetle, Phyllotreta cruciferae (Coleoptera: Chrysomelidae), in southwestern Ontario. The Canadian Entomologist, 111: 13951407.CrossRefGoogle Scholar
Lamb, R.J. 1984. Effects of flea beetles, Phyllotreta spp. (Chrysomelidae: Coleoptera), on the survival, growth, seed yield and quality of canola, rape and yellow mustard. The Canadian Entomologist, 116: 269280.CrossRefGoogle Scholar
Lamb, R.J., and Turnock, W.J. 1982. Economics of insecticidal control of flea beetles (Coleoptera: Chrysomelidae) attacking rape in Canada. The Canadian Entomologist, 114: 827840.CrossRefGoogle Scholar
Lui, T., and Sparks, A.N. Jr., 1999. Efficacies of selected insecticides on cabbage looper and diamondback moth on cabbage in south Texas. Subtropical Plant Science, 51: 5660.Google Scholar
Lui, T., Sparks, A.N. Jr., Hendrix, W.H., and Yue, B. 1999. Effects of SpinTor (spinosad) on cabbage looper (Lepidoptera: Noctuidae): toxicity and persistence of leaf residue on cabbage under field and laboratory conditions. Journal of Economic Entomology, 92: 12661273.Google Scholar
Mason, P.G., Erlandson, M.A., Elliott, R.H., and Harris, B.J. 2002. Potential impact of spinosad on parasitoids of Mamestra configurata (Lepidoptera: Noctuidae). The Canadian Entomologist, 134: 5968.CrossRefGoogle Scholar
Mayes, M.A., Thompson, G.D., Husband, B., and Miles, M.M. 2003. Spinosad toxicity to pollinators and associated risk. Review of Environmental Contamination and Toxicology, 179: 3771.Google ScholarPubMed
McLaughlin, N.B., Bowes, G.R., Thomas, A.G., Dyck, F.B., Lindsay, T.M., and Wise, R.F. 1985. A new design for a seed germinator with 100 independently temperature controlled cells. Weed Research, 25: 161173.CrossRefGoogle Scholar
McLeod, P., Diaz, F.J., and Johnson, D.T. 2002. Toxicity, persistence and efficacy of spinosad, chlorfenapyr and thiamethoxam on eggplant when applied against the eggplant flea beetle (Coleoptera: Chrysomelidae). Journal of Economic Entomology, 95: 331335.CrossRefGoogle ScholarPubMed
Mertz, F.P., and Yao, R.C. 1990. Saccharopolyspora spinosa sp. nov. isolated from soil collected in a sugar mill rum still. International Journal of Systematic Bacteriology, 40: 3439.CrossRefGoogle Scholar
Palaniswamy, P. 1996. Host plant resistance to insect pests of cruciferous crops with special reference to flea beetles feeding on canola — a review. In Proceedings of the ISHS Symposium on Brassicas, Ninth Crucifer Genetics Workshop, Lisbon, Portugal, 15–19 November 1994. Edited by Dias, J.S., Crute, I., and Monteiro, A.A.. Acta Horticulturae, 407: 469481.Google Scholar
Palaniswamy, P., Lamb, R.J., and McVetty, P.B.E. 1992. Screening for antixenosis resistance to flea beetles, Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae), in rapeseed and related crucifers. The Canadian Entomologist, 124: 895906.CrossRefGoogle Scholar
Putnam, L.G. 1977. Response of four brassica seed crop species to attack by the crucifer flea beetle, Phyllotreta cruciferae. Canadian Journal of Plant Science, 57: 987989.CrossRefGoogle Scholar
Salgado, V.L. 1998. Studies on the mode of action of spinosad: insect symptoms and physiological correlates. Pesticide Biochemistry and Physiology, 60: 91102.CrossRefGoogle Scholar
Sarfraz, M., Dosdall, L.M., and Keddie, B.A. 2005. Spinosad: a promising tool for integrated pest management. Outlooks on Pest Management, 16: 7884.CrossRefGoogle Scholar
SAS Institute Inc. 1999. SAS/STAT® user's guide. Version 8. Vol. 2. SAS Institute Inc., Cary, North Carolina.Google Scholar
Schoonover, J.R., and Larson, I.L. 1994. Laboratory activity of spinosad on non-target beneficial arthropods. Arthropod Management Tests, 20: 357.CrossRefGoogle Scholar
Scott, J.G. 1998. Toxicity of spinosad to susceptible and resistant strains of house flies, Musca domestica. Pesticide Science, 54: 131133.3.0.CO;2-0>CrossRefGoogle Scholar
Sparks, T.C., Thompson, G.D., Larson, L.L., Kirst, H.A., Jantz, O.K., Worden, T.V., Hertlein, M.B., and Busacca, J.D. 1995. Biological characteristics of the spinosyns: a new class of naturally derived insect control agents. In Proceedings of the 1995 Beltwide Cotton Conference, San Antonio, Texas, 4–7 January 1995. National Cotton Council of America, Memphis, Tennessee. pp. 903907.Google Scholar
Sparks, T.C., Sheets, J.J., Skomp, J.R., Worden, T.V., Hertlein, M.B., Larson, L.L., Bellows, D., Thibault, S., and Wally, L. 1997. Penetration and metabolism of spinosyn A in lepidopterous larvae. In Proceedings of the 1997 Beltwide Conference, New Orleans, Louisiana, 7–10 January 1997. National Cotton Council of America, Memphis, Tennessee. pp. 12591264.Google Scholar
Sparks, T.C., Thompson, G.D., Kirst, H.A., Hertlein, M.B., Larson, L.L., Worden, T.V., and Thibault, S.T. 1998. Biological activity of the spinosyns, new fermentation derived insect control agents, on tobacco budworm (Lepidoptera: Noctuidae) larvae. Journal of Economic Entomology, 91: 1277–1233.CrossRefGoogle Scholar
Stringam, G.R. 1971. Genetics of four hypocotyl mutants in Brassica campestris. Journal of Heredity, 62: 248250.CrossRefGoogle Scholar
Thomas, A.G., Lefkovitch, L.P., Woo, S.L., Bowes, G.G., and Peschken, D.P. 1994. Effect of temperature on germination within and between diploid and tetraploid populations of Matricaria perforata Mertat. Weed Research, 34: 187198.CrossRefGoogle Scholar
Tillman, P.G., and Mulrooney, J.E. 2000. Effect of selected insecticides on the natural enemies Coleomegilla maculata and Hippodamia convergens (Coleoptera: Coccinellidae), Geocoris punctipes (Hemiptera: Lygaeidae), and Bracon mellitor, Cardiochiles nigriceps, and Cotesia marginiventris (Hymenoptera: Braconidae) in cotton. Journal of Economic Entomology, 93: 16381643.CrossRefGoogle Scholar
Toews, M.D., and Subramanyam, B. 2003. Contribution of contact toxicity and wheat condition to mortality of stored-product insects exposed to spinosad. Pest Management Science, 59: 538544.CrossRefGoogle ScholarPubMed
Toews, M.D., Subramanyam, B., and Rowan, J.M. 2003. Knockdown and mortality of adults of eight species of stored-product beetles exposed to four surfaces treated with spinosad. Journal of Economic Entomology, 96: 19671973.CrossRefGoogle ScholarPubMed
Wanner, K.W., Helson, B.V., and Harris, B.J. 2000. Laboratory and field evaluation of spinosad against the gypsy moth, Lymantria dispar. Pest Management Science, 56: 855860.3.0.CO;2-#>CrossRefGoogle Scholar
Weiss, M.J., McLeod, P., Schatz, B.G., and Hanson, B.K. 1991. Potential for insecticidal management of flea beetles (Coleoptera: Chrysomelidae) on canola. Journal of Economic Entomology, 84: 15971603.CrossRefGoogle Scholar
Wylie, H.G. 1984. Oviposition and survival of three nearctic euphorine braconids in crucifer-infesting flea beetles (Coleoptera: Chrysomelidae). The Canadian Entomologist, 116: 14.CrossRefGoogle Scholar