Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T11:35:25.120Z Has data issue: false hasContentIssue false

Laboratory evaluation of flight activity of Dendroctonus armandi (Coleoptera: Curculionidae: Scolytinae)

Published online by Cambridge University Press:  02 April 2012

Hui Chen*
Affiliation:
College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi 712100, People's Republic of China
Zhen Li
Affiliation:
College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi 712100, People's Republic of China
Ming Tang
Affiliation:
College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi 712100, People's Republic of China
*
1 Corresponding author (e-mail: [email protected]).

Abstract

Dendroctonus armandi Tsai and Li is an important native pest of Chinese white pine (Pinus armandii Franch. (Pinaceae)) in the Qinling Mountains of Shaanxi Province, People's Republic of China. Populations can reach epidemic levels and cause widespread mortality of trees in forest ecosystems. We studied the flight behaviour of D. armandi collected under controlled conditions using a flight-mill system to gather information to aid in its management. Our results indicate that D. armandi has three distinct flight patterns (intermittent flight, short-burst flight, and sustained uninterrupted flight). There were no significant differences in flight performance between males and females. Median daily values for total distance traveled, total flight time, and maximum uninterrupted flight time were 275.1 m day−1, 815 s day−1, and 40 s day−1, respectively (n = 148). Individuals displayed positive phototactic behaviour: total flight distance and total flight time were greater under artificial illumination than in natural light or darkness. The level of flight activity increased throughout the morning, remained high during the afternoon (1400–1600), dropped considerably at 1800, and was lowest at midnight. There was no significant difference in flight distance or flight time between the first and second generations. From the data collected, it is clear that the phototactic response is an important factor in the flight behaviour of D. armandi and may influence its spatial dispersal.

Résumé

Dendroctonus armandi Tsai et Li est un ravageur important du pin d'Armand (Pinus armandii Franch. (Pinaceae)) dans les monts Qinling de la province de Shaanxi, Chine. Les populations peuvent atteindre des densités épidémiques et provoquer une mortalité générale des arbres dans les écosystèmes forestiers. Nous étudions le comportement de vol de D. armandi gardés dans des conditions contrôlées à l'aide d'un tunnel de vol afin d'obtenir des renseignements utiles à sa gestion. Il y a trois patrons distincts de vol chez D. armandi (vol intermittent, envolée courte et saccadée et vol continu et ininterrompu). Il n’y a pas de différence significative entre les performances de vol des mâles et des femelles. Les valeurs médianes journalières des distances parcourues, de la durée totale du vol et de la durée maximale de vol ininterrompu sont respectivement de 275,1 m jour−1, 815 s jour−1 et 40 s jour−1 (n = 148). Les individus de S. armandi possèdent un comportement de phototaxie positive dans lequel la distance totale de vol et la durée totale de vol sont plus importantes en conditions d'illumination artificielle qu’en lumière naturelle ou à l'obscurité. L’activité de vol augmente au cours de la matinée, reste élevée durant l'après-midi (14h00–16h00), diminue considérablement à 18h00 et est minimale à minuit. Il n’y a pas de différence significative entre les distances de vol et les durées de vol de la première et de la seconde génération. D’après nos données, il est clair que la réaction de phototaxie est un facteur important dans le comportement de vol chez D. armandi et qu’elle peut influencer sa répartition spatiale.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atkins, M.D. 1959. A study of the flight of the Douglas-fir beetle, Dendroctonus pseudotsugae Hopk. (Coleoptera: Scolytidae) I. Flight preparation and response. The Canadian Entomologist, 91: 283291. doi:10.4039/Ent91283-5.CrossRefGoogle Scholar
Bennett, R.B., and Borden, J.H. 1971. Flight arrestment of tethered Dendroctonus pseudotsugae and Trypodendron lineatum (Coleoptera: Scolytidae) in response to olfactory stimuli. Annals of the Entomological Society of America, 64: 12731286.CrossRefGoogle Scholar
Borden, J.H. 1967. Factors influencing the response of Ips confusus (Coleoptera: Scolytidae) to male attractant. The Canadian Entomologist, 99: 11641193. doi:10.4039/Ent991164-11.CrossRefGoogle Scholar
Borden, J.H., and Bennett, P.R. 1969. A continuously recording flight mill for investigating the effect of volatile substances on the flight of tethered insects. Journal of Economic Entomology, 62: 782785.CrossRefGoogle Scholar
Botterweg, P.P. 1982. Dispersal and flight behavior of the spruce beetle Ips typographus in relation to sex, size and fat content. Zeitschrift für Angewandte Entomologie, 94: 466489.CrossRefGoogle Scholar
Briegel, H., Knüsel, I., and Timmermann, S.E. 2001. Aedes aegypti: size, reserves, survival and flight potential. Journal of Vector Ecology, 26: 2131. PMID:11469181.Google ScholarPubMed
Byers, J.A. 2000. Wind-aided dispersal of simulated bark beetles flying through forests. Ecological Modelling, 125: 231243. doi:10.1016/S0304-3800 (99)00187-8.CrossRefGoogle Scholar
Byers, J.A., and Löfqvist, J. 1989. Flight initiation and survival in the bark beetle Ips typographus (Coleoptera: Scolytidae) during the spring dispersal. Holarctic Ecology, 12: 432440. doi:10.1111/j.1600-0587.1989.tb00919.x.Google Scholar
Cai, B.H. 1980. Distribution and characteristics of wood-boring pests and bark beetles in China. Shaanxi Forest Science and Technology, 1: 13.Google Scholar
Chen, H., and Tang, M. 2007. Spatial and temporal dynamics of bark beetles in Chinese white pine in Qinling Mountains of Shaanxi Province, China. Environmental Entomology, 36: 11241130. doi: 10.1603/0046-225X(2007)36[1124:SATDOB]2.0.CO;2.CrossRefGoogle ScholarPubMed
Chen, H., and Yuan, F. 2000. Chinese white pine bark beetle ecosystem and integrated pest management in Qinling Mountains. China Forestry Publishing House, Beijing, China.Google Scholar
Chen, H., Tang, M., and Ye, H.M. 1999. Niche of bark beetles within Pinus armandi ecosystem in inner Qinling Mountains. Scientia Silvae Sinicae, 35: 4044.Google Scholar
Chen, H., Kaufmann, C., and Scherm, H. 2006 a. Laboratory evaluation of flight performance of the plum curculio (Coleoptera: Curculionidae). Journal of Economic Entomology, 99: 20652071. PMID:17195674 doi: 10.1603/0022-0493 (2006)99[2065:LEOFPO]2.0.CO;2.CrossRefGoogle ScholarPubMed
Chen, H., Tang, M., Gao, J.M., Chen, X., and Li, Z.B. 2006 b. Changes in the compositions of volatile monoterpenes and sesquiterpenes of Pinus armandi, P. tabulaeformis and P. bungeana in northwest China. Chemistry of Natural Compounds, 42: 430433. doi:10.1007/s10600-006-0208-1.CrossRefGoogle Scholar
Choudhury, J.H., and Kennedy, J.S. 1980. Flight versus pheromone-bearing wind in the control of flight direction by bark beetles, Scolytus multistriatus. Physiological Entomology, 5: 207214. doi: 10.1111/j.1365-3032.1980.tb00228.x.CrossRefGoogle Scholar
Duelli, P., Studer, M., and Naef, W. 1986. The flight of bark beetles outside of forest areas. Journal of Applied Entomology, 102: 139148. doi: 10.1111/j.1439-0418.1986.tb00904.x.CrossRefGoogle Scholar
Forsse, E., and Solbreck, C. 1985. Migration in the bark beetle Ips typographus L.: duration, timing and height of flight. Zeitschrift für Angewandte Entomologie, 100: 4757. doi: 10.1111/j.1439-0418.1985.tb02756.x.CrossRefGoogle Scholar
Gaylord, M.L., Williams, K.K., Hofstetter, R.W., Mcmillin, J.D., DeGomez, T.E., and Wagner, M.R. 2008. Influence of temperature on spring flight initiation for southwestern ponderosa pine bark beetles (Coleoptera: Curculionidae, Scolytinae). Environmental Entomology, 37: 5769. doi: 10.1603/0046-225X(2008)37[57:IOTOSF]2.0.CO;2.CrossRefGoogle ScholarPubMed
Graham, K. 1959. Release by flight exercise of a chemotropic response from photopositive domination in a scolytid beetle. Nature (London), 184: 283284. doi:10.1038/184283b0.CrossRefGoogle Scholar
Graham, K. 1961. Air swallowing: a mechanism in photic reversal of the beetle Trypodendron. Nature (London), 191: 519520. doi:10.1038/191519a0.CrossRefGoogle Scholar
Graham, K. 1962. Photic behavior in the ecology of the ambrosia beetle Trypodendron. lineatum. In Proceedings of the 11th International Congress of Entomology, Vienna, 1960. Edited by Strouhal, H. and Beier, M.. Vol. 2. p. 226.Google Scholar
Henson, W.R. 1962. Laboratory studies on the adult behavior of Conophthorus coniperda (Schwarz) (Coleoptera: Scolytidae). III. Flight. Annals of the Entomological Society of America, 55: 524530.CrossRefGoogle Scholar
Jactel, H., and Gaillard, J. 1991. A preliminary study of the dispersal potential of Ips sexdentatus (Boern) (Coleoptera: Scolytidae) with an automatically recording flight mill. Journal of Applied Entomology, 112: 138145. doi: 10.1111/j.1439-0418.1991.tb01039.x.CrossRefGoogle Scholar
Kinn, D.N., Perry, T.J., Guinn, F.H., Strom, B.L., and Woodring, J. 1994. Energy reserves of individual southern pine beetles (Coleoptera: Scolytidae) as determined by a modified phosphovanillin spectrophotometric method. Journal of Entomological Science, 29: 152163.CrossRefGoogle Scholar
Lobinger, G. 1994. Die Lufttemperatur als limitierender Faktor für die Schwärmaktivität zweier rindenbrütender Fichtenborkenkäferarten, Ips typographus L. und Pityogenes chalcographus L. (Col., Scolytidae). Anzeiger für Schädlingskunde, 67: 1417.CrossRefGoogle Scholar
Lobinger, G., and Skatulla, U. 1996. Untersuchungen zum Einfluβ von Sonnenlicht auf das Schwärmverhalten von Borkenkäfern. Anzeiger für Schädlingskunde, 69: 183185.CrossRefGoogle Scholar
Martikainen, P. 2000. Flight period and ecology of Trypodendron proximum (Niijima) (Coleoptera: Scolytidae) in Finland. Journal of Applied Entomology, 124: 5762. doi: 10.1046/j.1439-0418.2000.00446.x.CrossRefGoogle Scholar
McCambridge, W.F. 1971. Temperature limits of flight of the mountain pine beetle, Dendroctonus ponderosae. Annals of the Entomological Society of America, 64: 534535.CrossRefGoogle Scholar
Perttunen, V., and Boman, T. 1965. Laboratory experiments on the spontaneous take-off activity of Blastophagus piniperda (Coleoptera: Scolytidae) in relation to temperature and light intensity at different seasons of the year. In Proceedings of the 12th International Congress of Entomology, London, 1964. Edited by Freeman, P.. Vol. 5. pp. 344345.Google Scholar
Ren, Z.F., and Dang, X.D. 1959. Investigation and control of Dendroctonus armandi Tsai et Li in Qinling Mountain. Journal of Northwest Agricultural College, 2: 5989.Google Scholar
Rowley, W.A., Graham, C.L., and Williams, R.E. 1968. A flight mill system for the laboratory study of mosquito flight. Annals of the Entomological Society of America, 61: 15071514.CrossRefGoogle Scholar
SAS Institute Inc. 2006. SASH. Version 8.1. SAS Institute Inc., Cary, North Carolina.Google Scholar
Weber, B.C. 1982. The biology of the ambrosia beetle Xylosandrus germanus (Blandford) (Coleoptera: Scolytidae) and its effects on black walnut. Ph.D. dissertation, Southern Illinois University, Carbondale, Illinois.Google Scholar
Wermelinger, B. 2004. Ecology and management of the spruce bark beetle Ips typographus —a review of recent research. Forest Ecology and Management, 202: 6782. doi:10.1016/j.foreco.2004.07.018.CrossRefGoogle Scholar
Yin, H.F., Huang, F.S., and Li, Z.L. 1984. Economic insect fauna of China. Fasc. 29. Coleoptera, Scolytidae. Science Press. Beijing, China.Google Scholar