Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-02T16:12:14.825Z Has data issue: false hasContentIssue false

La lutte contre les moustiques (Diptera: Culicidae): diversité des approches et application du contrôle biologique

Published online by Cambridge University Press:  29 October 2014

T. Bawin*
Affiliation:
Entomologie fonctionnelle et évolutive, Gembloux Agro-Bio Tech, Université de Liège, Passage des Déportés 2, B-5030 Gembloux, Belgique
F. Seye
Affiliation:
Entomologie fonctionnelle et évolutive, Gembloux Agro-Bio Tech, Université de Liège, Passage des Déportés 2, B-5030 Gembloux, Belgique Laboratoire de biologie de la reproduction, Faculté de Science et Technologie, Université Cheikh Anta Diop, B-5005, Fann, Dakar, Sénégal
S. Boukraa
Affiliation:
Entomologie fonctionnelle et évolutive, Gembloux Agro-Bio Tech, Université de Liège, Passage des Déportés 2, B-5030 Gembloux, Belgique
J.-Y. Zimmer
Affiliation:
Entomologie fonctionnelle et évolutive, Gembloux Agro-Bio Tech, Université de Liège, Passage des Déportés 2, B-5030 Gembloux, Belgique
F. Delvigne
Affiliation:
Bio-industries/CWBI, Gembloux Agro-Bio Tech, Université de Liège, Passage des Déportés 2, B-5030 Gembloux, Belgique
F. Francis
Affiliation:
Entomologie fonctionnelle et évolutive, Gembloux Agro-Bio Tech, Université de Liège, Passage des Déportés 2, B-5030 Gembloux, Belgique
*
1 Tél.: +32 81 622283; Fax: +32 81 622312; E-mail: [email protected]

Résumé

Plusieurs espèces de moustiques (Diptera: Culicidae) sont des vecteurs de zoonoses d’incidence médicale et vétérinaire considérables. Une modification de la distribution géographique de ces vecteurs majoritairement engendrée par des facteurs anthropiques est actuellement accompagnée de (ré-)émergences de maladies infectieuses en Europe et en Amérique du Nord. Depuis l’avènement des insecticides de synthèse lors de la seconde guerre mondiale, les moustiques font l’objet de recherches de plus en plus étendues et approfondies. Dans une vision de lutte intégrée, les moyens de lutte anti-vectorielle se répartissent aujourd’hui selon quatre axes principaux: (1) la gestion environnementale et le contrôle physique, (2) le contrôle chimique, (3) le contrôle génétique, et (4) le contrôle biologique par le biais d’entomophages et de micro-organismes entomopathogènes. Dans ce contexte, ces derniers ont un potentiel intéressant car ils possèdent la capacité d’infecter et de tuer l’hôte avec une sélectivité plus ou moins prononcée. Cet article se propose de resituer le contrôle biologique parmi les autres techniques dans la lutte anti-vectorielle contre les moustiques, et de faire état des potentialités et des perspectives offertes par les bactéries, virus et champignons entomopathogènes. Leur utilisation sous forme de biopesticides est enfin discutée.

Abstract

Many mosquito (Diptera: Culicidae) species are zoonotic vectors responsible for numerous infectious diseases of medical and veterinary importance. Currently, changes in the vectors’ geographical distribution induced chiefly by anthropogenic factors are accompanied by emerging and reemerging infectious diseases in Europe and North America. Since the advent of synthetic insecticides during the Second World War, mosquitoes are the object of considerably expanded and deepened research. In an integrated pest management context, means of control are now mainly classified as: (1) environmental management and physical control, (2) chemical control, (3) genetic control, and (4) biological control by means of entomophagous predators and entomopathogenic microorganisms. In this context, these last have significant potential because of their ability to infect and kill their host with more or less targeted selectivity. This article proposes to emphasize biological control among other techniques in mosquito control, and to assess the potential and the opportunities offered by entomopathogenic bacteria, viruses and fungi. Finally, their use as biopesticides is discussed.

Type
Insect Management – REVIEW
Copyright
© Entomological Society of Canada 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject Editor: Kateryn Rochon

References

Références

Abdul-Ghani, R., Al-Mekhlafi, A.M., et Alabsi, M.S. 2012. Microbial control of malaria: biological warfare against the parasite and its vector. Acta Tropica, 121: 7184.Google Scholar
Ahn, J.-Y., Lee, J.-Y., Yang, E.-J., Lee, Y.-J., Koo, K.-B., Song, K.-S., et Lee, K.-Y. 2013. Mosquitocidal activity of anthraquinones isolated from symbiotic bacteria Photorhabdus of entomopathogenic nematode. Journal of Asia-Pacific Entomology, 16: 317320.Google Scholar
Alphey, L., Beard, C.B., Bittingsley, P., Coetzee, M., Crisanti, A., Curtis, C., et al. 2002. Malaria control with genetically manipulated insect vectors. Science, 298(5591): 119121.CrossRefGoogle Scholar
Alves, S.B., Alves, L.F.A., Lopes, R.B., Pereira, R.M., et Vieira, S.A. 2002. Potential of some Metarhizium anisopliae isolates for control of Culex quinquefasciatus (Dipt., Culicidae). Journal of Applied Entomology, 126: 504509.Google Scholar
Aronson, A.I. et Shai, Y. 2001. Why Bacillus thuringiensis insecticidal toxins are so effective: unique features of their mode of action. FEMS Microbiology Letters, 195: 18.Google Scholar
Assamoi, A.A., Destain, J., et Thonart, P. 2009. Aspects microbiologiques de la production par fermentation solide des endo-β-1,4-xylanases de moisissures: le cas de Penicillium canescens . Biotechnology, Agronomy, Society and Environment, 13: 281294.Google Scholar
Bagga, S., Hu, G., Screen, S.E., et St Leger, R.J. 2004. Reconstructing the diversification of subtilisins in the pathogenic fungus Metarhizium anisopliae . Gene, 324: 159169.CrossRefGoogle ScholarPubMed
Bailey, K.L. et Falk, S. 2011. Turning research on microbial bioherbicides into commercial products – a Phoma story. Pest Technology, 5: 7379.Google Scholar
Balaraman, K., Balasubramanian, M., et Manonmani, L.M. 1983. Bacillus thuringiensis H-14 (VCRC B-17) formulation as mosquito larvicide. Indian Journal of Medical Research, 77: 3337.Google Scholar
Baumann, P., Clark, M.A., Baumann, L., et Broadwell, A.H. 1991. Bacillus sphaericus as a mosquito pathogen: properties of the organism and its toxins. Microbiological Reviews, 55: 425436.Google Scholar
Becker, N. 1997. Microbial control of mosquitoes: management of the Upper Rhine mosquito population as a model programme. Parasitology Today, 13: 485487.Google Scholar
Becker, N., Petric, D., Zgomba, M., Dahl, C., Boase, C., Lane, J., et Kaiser, A. 2010. Mosquitoes and their control. Springer-Verlag, Heidelberg, Allemagne.CrossRefGoogle Scholar
Becnel, J.J. 2006. Transmission of viruses to mosquito larvae mediated by divalent cations. Journal of Invertebrate Pathology, 92: 141145.Google Scholar
Becnel, J.J. et White, S.E. 2007. Mosquito pathogenic viruses – the last 20 years. The American Mosquito Control Association, 23: 3649.Google Scholar
Beier, J.C., Keating, J., Githure, J.I., MacDonald, M.B., Impoinvil, D.E., et Novak, R.J. 2008. Integrated vector management for malaria control. Malaria Journal, 7: S4. Disponible sur http://www.malariajournal.com/content/7/S1/S4 [consulté le 11 avril 2013].Google Scholar
Bergoin, M. et Tijssen, P. 2000. Molecular biology of Densovirinae. Contributions to Microbiology, 4: 1232.Google Scholar
Berry, C. 2012. The bacterium, Lysinibacillus sphaericus, as an insect pathogen. Journal of Invertebrate Pathology, 109: 110.Google Scholar
Blanford, S., Shi, W., Christian, R., Marden, J.H., Koekemoer, L.L., Brooke, B.D., et al. 2011. Lethal and pre-lethal effects of a fungal biopesticide contribute to substantial and rapid control of malaria vectors. Public Library of Science One, 6(8): e23591. doi:10.1371/journal.pone.0023591.Google Scholar
Boisvert, M. et Boisvert, J. 2000. Effects of Bacillus thuringiensis var. israelensis on target and nontarget organisms: a review of laboratory and field experiments. Biocontrol Science and Technology, 10: 517561.Google Scholar
Bonizzoni, M., Gasperi, G., Chen, X., et James, A.A. 2013. The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends in Parasitology, 29: 460468.CrossRefGoogle ScholarPubMed
Boukraa, S., Raharimalala, F.N., Zimmer, J.-Y., Schaffner, F., Bawin, T., Haubruge, E., et Francis, F. 2013. Reintroduction of the invasive mosquito species Aedes albopictus in Belgium in July 2013. Parasite, 20: 54. doi: 10.1051/parasite/2013054.Google Scholar
Bravo, A., Gill, S.S., et Soberon, M. 2007. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon, 49: 423435.Google Scholar
Bravo, A., Likitvivatanavong, S., Gill, S.S., et Soberon, M. 2011. Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochemistry and Molecular Biology, 41: 423431.CrossRefGoogle Scholar
Buchatsky, L.P., Kuznetsova, M.A., Lehedinets, N.N., et Konoko, A.G. 1987. Development and basic properties of the viral preparation viroden. Voprosy Virusologii, 32: 729799.Google Scholar
Bukhari, T., Takken, W., et Koenraadt, C.J.M. 2011. Development of Metarhizium anisopliae and Beauveria bassiana formulations for control of malaria mosquito larvae. Parasites & Vectors, 4: 23. doi:10.1186/1756-3305-4-23.CrossRefGoogle ScholarPubMed
Butt, T.M. et Copping, L.G. 2000. Fungal biological control agents. Pesticide Outlook, 11: 186191.Google Scholar
Butt, T.M., Jackson, C., et Magan, N. 2001. Fungi as biocontrol agents: progress, problems and potential. CAB International, Wallingford, Royaume-Uni.CrossRefGoogle Scholar
Carlson, J., Suchman, E., et Buchatsky, L. 2006. Densoviruses for control and genetic manipulation of mosquitoes. Advances in Virus Research, 68: 361392.Google Scholar
Carson, R. 1962. Silent spring. Houghton Mifflin Company, Boston, Massachusetts, Les États-Unis d’Amérique.Google Scholar
Centre National d’Expertise sur les Vecteurs. 2012. Optimisation de la surveillance et du contrôle d’Aedes albopictus en France [en ligne]. Disponible sur http://www.cnev.fr/index.php/publications-et-outils/avis-du-cnev/981-rapport-relatif-a-la-surveillance-et-au-controle-daedes-albopictus [consulté le 8 avril 2014].Google Scholar
Chandra, G., Bhattacharjee, I., Chatterjee, S.N., et Ghosh, A. 2008. Mosquito control by larvivorous fish. Indian Journal of Medical Research, 127: 1327.Google Scholar
Chapman, H.C. 1974. Biological control of mosquito larvae. Annual Review of Entomology, 19: 3359.Google Scholar
Charles, J.-F. et Nielsen-LeRoux, C. 1996. Les bactéries entomopathogènes: mode d’action sur les larves de moustiques et phénomènes de résistance. Annales de l’Institut Pasteur, 7: 233245.CrossRefGoogle Scholar
Charles, J-F. et Nielsen-LeRoux, C. 2000. Mosquitocidal bacterial toxins: diversity, mode of action and resistance phenomena. Memórias do Instituto Oswaldo Cruz, Rio de Janeiro, 95: 201206.Google Scholar
Charles, J.-F., Nielsen-LeRoux, C., et Delécluse, A. 1996. Bacillus sphaericus toxins: molecular biology and mode of action. Annual Review of Entomology, 41: 451472.Google Scholar
Charnley, A.K. et Collins, S.A. 2007. Entomopathogenic fungi and their role in pest control. Dans The Mycota (Volume 4): environmental and microbial relationships. Sous la direction de C.P. Kubicek et I.S. Druzhinina. Springer-Verlag Berlin, Heidelberg, Allemagne. Pp. 159187.Google Scholar
Copping, L.G. et Menn, J.J. 2000. Biopesticides: a review of their action, applications and efficacy. Pest Management Science, 56: 651676.3.0.CO;2-U>CrossRefGoogle Scholar
Corby-Harris, V., Drexler, A., Watkins de Jong, L., Antonova, Y., Pakpour, N., Ziegler, R., et al. 2010. Activation of Akt signaling reduced the prevalence and intensity of malaria parasite infection and lifespan in Anopheles stephensi mosquitoes. Public Library of Science Pathogens, 6(8). doi: 10.1371/journal.ppat.1001003.Google Scholar
da Silva, O.S., Prado, G.R., da Silva, J.L.R., Silva, C.E., da Costa, M., et Heermann, R. 2013. Oral toxicity of Protorhabdus luminescens and Xenorhabdus nematophila (Enterobacteriaceae) against Aedes aegypti (Diptera: Culicidae). Parasitology Research, 112: 28912896.CrossRefGoogle ScholarPubMed
de Barjac, H. et Frachon, E. 1990. Classification of Bacillus thuringiensis strains. BioControl, 35: 233240.Google Scholar
de Barjac, H., Sebald, M., Charles, J.-F., Cheong, W.H., et Lee, H.L. 1990. Clostridium bifermentans serovar malaysia, a new anaerobic bacterium toxic to mosquito and blackfly larvae. Comptes Rendus de l’Académie des Sciences – Série III, 310: 383387.Google Scholar
de Faria, M.R. et Wraight, S.P. 2007. Mycoinsecticides and Mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biological Control, 43: 237256.Google Scholar
Delatte, H., Paupy, C., Dehecq, J.S., Thiria, J., Failloux, A.B., et Fontenille, D. 2008. Aedes albopictus, vecteur des virus du chikungunya et de la dengue à la Réunion: biologie et contrôle. Parasite, 15: 313.CrossRefGoogle Scholar
Delécluse, A., Rosso, M.-L., et Ragni, A. 1995. Cloning and expression of a novel toxin gene from Bacillus thuringiensis subsp. jegathesan, encoding a highly mosquitocidal protein. Applied and Environmental Microbiology, 61: 42304235.Google Scholar
Dhindsa, K.S., Sangodkar, U.M.X., et Kumar, A. 2002. Novel cost-effective method of screening soils for the presence of mosquito-pathogenic bacilli. Letters in Applied Microbiology, 35: 457461.Google Scholar
Dorta, B., Bosch, A., Arcas, J.A., et Ertola, R.J. 1990. High level of sporulation of Metarhizium anisopliae in a medium containing by-products. Applied Microbiology and Biotechnology, 33: 712715.Google Scholar
Federici, B.A. 2010. Recombinant bacterial larvicides for control of important mosquito vectors of disease. Dans Vector biology, ecology and control. Sous la direction de P. Atkinson. Springer Science+Business Media, Heidelberg, Allemagne. Pp. 163176.Google Scholar
Federici, B.A., Park, H-W., Bideshi, D.K., Wirth, M.C., et Johnson, J.J. 2003. Recombinant bacteria for mosquito control. The Journal of Experimental Biology, 206: 38773885.Google Scholar
Federici, B.A, Park, H.-W., Bideshi, D.K., Wirth, M.C., Johnson, J.J., Sakano, Y., et Tanq, M. 2007. Developing recombinant bacteria for control of mosquito larvae. Journal of the American Mosquito Control Association, 23: 164175.Google Scholar
Fontenille, D., Lagneau, C., Lecollinet, S., Lefait Robin, R., Setbon, M., et al 2009. La lutte antivectorielle en France. IRD editions, Paris, France.CrossRefGoogle Scholar
Glare, T., Caradus, J., Gelernter, W., Jackson, T., Keyhani, N., Köhl, J., et al. 2012. Have biopesticides come of age? Trends in Biotechnology, 30: 250258. doi: 10.1016/j.tibtech.2012.01.003.Google Scholar
Glare, T.R. et O’Callaghan, M. 1998. Environmental and health impacts of Bacillus thuringiensis israelensis . Report for the Ministry of Health, Wellington, New Zealand.Google Scholar
Goddard, J. 2008. Mosquito-borne diseases. Dans Infectious diseases and arthropods. Sous la direction de J. Goddard. Humana Press, Totowa, New Jersey, Les États-Unis d’Amérique. Pp. 3179.Google Scholar
Goldberg, L.H. et Margalit, J. 1977. A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Uranotaenia unguiculata, Culex univittatus, Aedes aegypti and Culex pipiens . Mosquito News, 37: 355358.Google Scholar
Gould, E.A. et Higgs, S. 2009. Impact of climate change and other factors on emerging arbovirus diseases. Transactions of the Royal Society of Tropical Medicine and Hygiene, 103: 109121.Google Scholar
Govindarajan, M., Jebanesan, A., et Reetha, D. 2005. Larvicidal effect of extracellular secondary metabolites of different fungi against the mosquito, Culex quinquefasciatus Say. Tropical Biomedicine, 22: 13.Google Scholar
Gu, J., Liu, M., Deng, Y., Peng, H., et Chen, X. 2011. Development of an efficient recombinant mosquito densovirus-mediated RNA interference system and its preliminary application in mosquito control. Public Library of Science One, 6(6): e21329. doi: 10.1371/journal.pone.0021329.Google Scholar
Hallmon, C.F., Schreiber, E.T., Vo, T., et Bloomquist, M.A. 2000. Field trials of three concentrations of Laginex as biological larvicide compared to Vectobac-12AS as a biocontrol agent for Culex quinquefasciatus . Journal of the American Mosquito Control Association, 16: 58.Google Scholar
Hamon, J. et Garret-Jones, C. 1963. La résistance aux insecticides chez les vecteurs majeurs du paludisme et son importance opérationnelle. Bulletin de l’Organisation mondiale de la Santé, 28: 124.Google Scholar
Hamon, J., Mouchet, J., Brengues, J., et Chauvet, G. 1970. Problems facing anopheline vector control: vector ecology and behaviour before, during and after application of control measures. Miscellaneous Publications of the Entomological Society of America, 1: 2844.Google Scholar
Hamon, J., Subra, R., Sales, S., et Coz, J. 1968. Présence dans le Sud-Ouest de la Haute-Volta de populations d’Anopheles gambiae « A » résistantes au DDT. Médecine Tropicale, 28: 524528.Google Scholar
Han, B., Specht, R., Wickramasinghe, S.R., et Carlson, J.O. 2005. Binding Aedes aegypti densonucleosis virus to ion exchange membranes. Journal of Chromatography A, 1092: 114124.Google Scholar
Hayes, S.R., Hudon, M., et Park, H-W. 2011. Isolation of novel Bacillus species showing high mosquitocidal activity against several mosquito species. Journal of Invertebrate Pathology, 107: 7981.Google Scholar
Hemingway, J. et Ranson, H. 2000. Insecticide resistance in insect vectors of human disease. Annual Review of Entomology, 45: 371391.Google Scholar
Ignoffo, C.M., Couch, T.L., Garcia, C., et Kroha, M.J. 1981. Relative activity of Bacillus thuringiensis var. kurstaki and B. thuringiensis var. israelensis against larvae of Aedes aegypti, Culex quinquefasciatus, Trichoplusia ni, Heliothis zea, and Heliothis virescens . Journal of Economic Entomology, 74: 218222.Google Scholar
Jones, K.E., Patel, N.G., Levy, M.A., Storeygard, A., Balk, D., Gittleman, J.L., et Daszak, P. 2008. Global trends in emerging infectious diseases. Nature, 451: 990993.Google Scholar
Jousset, F.-X., Barreau, C., Boublik, Y., et Cornet, M. 1993. A parvo-like virus persistently infecting a C6/36 clone of Aedes albopictus mosquito cell line and pathogenic for Aedes aegypti larvae. Virus Research, 29: 99114.Google Scholar
Kanzok, S.M. et Jacobs-Lorena, M. 2006. Entomopathogenic fungi as biological insecticides to control malaria. Trends in Parasitology, 22: 4951.Google Scholar
Keiser, J., Maltese, M.F., Erlanger, T.E., Bos, R., Tanner, M., Singer, B.H., et Utzinger, J. 2005. Effect of irrigated rice agriculture on Japanese encephalitis, including challenges and opportunities for integrated vector management. Acta Tropica, 95: 4057.CrossRefGoogle ScholarPubMed
Kerwin, J.L. 2007. Oomycetes: Lagenidium giganteum . Journal of the American Mosquito Control Association, 23: 5057.Google Scholar
Khachatourians, G.G. et Qazi, S.S. 2008. Entomopathogenic fungi: biochemistry and molecular biology. The Mycota, 6: 3361.Google Scholar
Khan, H.A., Akram, W., Shehzad, K., et Shaalan, E.A. 2011. First report of field evolved resistance to agrochemicals in dengue mosquito, Aedes albopictus (Diptera: Culicidae), from Pakistan. Parasites and Vectors, 4: 146. doi:10.1186/1756-3305-4-146.Google Scholar
Kirk, P.M., Cannon, P.F., Minter, D.W., et Stalpers, J.A. 2008. Dictionary of the Fungi. CAB International, Wallingford, Royaume-Uni.Google Scholar
Kumar, R. et Hwang, J.-S. 2006. Larvicidal efficiency of aquatic predators: a perspective for mosquito biocontrol. Zoological Studies, 45: 447466.Google Scholar
Lacey, L.A. 2007. Bacillus thuringiensis serovariety israelensis and Bacillus sphaericus for mosquito control. Journal of the American Mosquito Control Association, 23: 133163.CrossRefGoogle ScholarPubMed
Lacey, L.A., Frutos, R., Kaya, H.K., et Vail, P. 2001. Insect pathogens as biological control agents: do they have a future? Biological Control, 21: 230248. doi: 10.1006/bcon.2001.0938.Google Scholar
Lacey, L.A. et Lacey, C.M. 1990. The medical importance of riceland mosquitoes and their control using alternatives to chemical insecticides. Journal of the American Mosquito Control Association, 2: 193.Google Scholar
Lacey, L.A. et Undeen, A.H. 1986. Microbial control of black flies and mosquitoes. Annual Review of Entomology, 31: 265296.CrossRefGoogle ScholarPubMed
Lapied, B., Pennetier, C., Apaire-Marchais, V., Licznar, P., et Corbel, V. 2009. Innovative applications for insect viruses: towards insecticide sensitization. Trends in Biotechnology, 27: 190198.Google Scholar
Lebedeva, P.O., Zelenko, A.P., Kuznetsova, M.A., et Gudzgorban, A.P. 1972. Studies on the demonstration of a viral infection in larvae of Aedes aegypti mosquitoes. Microbiology, Jacksonville State University, 34: 7073.Google Scholar
Leng, P., Zhang, Z., Pan, G., et Zhao, M. 2011. Applications and development trends in biopesticides. African Journal of Biotechnology, 10: 1986419873. doi: 10.5897/AJBX11.009.Google Scholar
Likitvivatanavong, S., Chen, J., Evans, A.M., Bravo, A., Soberon, M., et Gill, S. 2011. Multiple receptors as targets of cry toxins in mosquitoes. Journal of Agricultural and Food Chemistry, 59: 28292838.Google Scholar
Liu, B.-L. et Tzeng, Y.-M. 2012. Development and applications of destruxins: a review. Biotechnology Advances, 30: 12421254.Google Scholar
Lopez Lastra, C.C., Scorsetti, A.C., Marti, G.A., et Garcia, J.J. 2004. Host range and specificity of an Argentinean isolate of the aquatic fungus Leptolegnia chapmanii (Oomycetes: Saprolegniales), a pathogen of mosquito larvae (Diptera: Culicidae). Mycopathologia, 158: 311315.Google Scholar
Lynch, P.A., Grimm, U., Thomas, M.B., et Read, A.F. 2012. Prospective malaria control using entomopathogenic fungi: comparative evaluation of impact on transmission and selection for resistance. Malaria Journal, 11: 383. doi: 10.1186/1475-2875-11-383.Google Scholar
Margalit, J. et Dean, D. 1985. The story of Bacillus thuringiensis israelensis (B.t.i.). Journal of the American Mosquito Control Association, 1: 17.Google ScholarPubMed
Medlock, J.M., Hansford, K.M., Schaffner, F., Versteirt, V., Hendrickx, G., Zeller, H., et Van Bortel, W. 2012. A review of the invasive mosquitoes in Europe: ecology, public health risks, and control options. Vector-Borne and Zoonotic Diseases, 12: 435447.Google Scholar
Mendonça, A.F. 1992. Mass production, application and formulation of Metarhizium anisopliae for control of sugarcane froghopper Mahanarva posticata in Brazil. Dans Biological control of locusts and grasshoppers. Sous la direction de C.J. Lomer et C. Prior. CAB International, Wallingford, Royaume-Uni. Pp. 239254.Google Scholar
Milby, M.M., Reisen, W.K., et Reeves, W.C. 1983. Intercanyon movement of marked Culex tarsalis (Diptera: Culicidae). Journal of Medical Entomology, 20: 193198.Google Scholar
Mishra, S.K., Keller, J.E., Miller, J.R., Heisey, R.M., Nair, M.G., et Putnam, A.R. 1987. Insecticidal and nematicidal properties of microbial metabolites. Journal of Industrial Microbiology, 2: 267276.Google Scholar
Mitra, A., Chatterjee, C., et Mandal, F.B. 2011. Synthetic chemical pesticides and their effects on birds. Research Journal of Environmental Toxicology, 5: 8196.Google Scholar
Mohanty, S.S. et Prakash, S. 2009. Effects of culture media on larvicidal property of secondary metabolites of mosquito pathogenic fungus Chrysosporium lobatum (Moniliales: Moniliaceae). Acta Tropica, 109: 5054.CrossRefGoogle ScholarPubMed
Mohanty, S.S., Raghavendra, K., Mittal, P.K., et Dash, A.P. 2008. Efficacy of culture filtrates of Metarhizium anisopliae against larvae of Anopheles stephensi and Culex quinquefasciatus . Journal of Industrial Microbiology and Biotechnology, 35: 11991202.Google Scholar
Montesinos, E. 2003. Development, registration and commercialization of microbial pesticides for plant protection. International Microbiology, 6: 245252.Google Scholar
Mullen, G. et Durden, L. 2009. Medical and Veterinary Entomology. Elsevier Academic Press, Amsterdam, Pays-Bas.Google Scholar
Murugesan, A.G., Sathesh Prabu, C., et Selvakumar, C. 2009. Biolarvicidal activity of extracellular metabolites of the keratinophilic fungus Trichophyton mentagrophytes against larvae of Aedes aegypti – a major vector for chikungunya and dengue. Folia Microbiologica, 54: 213216.Google Scholar
Nam, V.S., Yen, N.T., Duc, H.M., Tu, T.C., Thang, V.T., Le, N.H., et al. 2012. Community-based control of Aedes aegypti by using Mesocyclops in Southern Vietnam. American Journal of Tropical Medicine and Hygiene, 86: 850859.Google Scholar
Nauen, R. 2007. Insecticide resistance in disease vectors of public health importance. Pest Management Science, 63: 628633.Google Scholar
N’Guessan, R., Corbel, V., Akogbéto, M., et Rowland, M. 2007. Reduced efficacy of insecticide-treated nets and indoor residual spraying for malaria control in pyrethroid resistance area, Benin. Emerging Infectious Diseases, 13: 199206.Google Scholar
Nielsen-LeRoux, C., Pasteur, N., Prètre, J., Charles, J.-F., Ben Sheikh, H., et Chevillon, C. 2002. High resistance to Bacillus sphaericus binary toxin in Culex pipiens (Diptera: Culicidae): the complex situation of west Mediterranean countries. Journal of Medical Entomology, 39: 729735.Google Scholar
Ochomo, E., Bayoh, M.N., Brodgon, W.G., Gimnig, J.E., Ouma, C., Vulule, J.M., et Walker, E.D. 2013. Pyrethroid resistance in Anopheles gambiae s.s. and Anopheles arabiensis in western Kenya: phenotypic, metabolic and target site characterizations of three populations. Medical and Veterinary Entomology, 27: 156164.Google Scholar
Orduz, S., Realpe, M., Arango, R., Murillo, L.A., et Delécluse, A. 1998. Sequence of the cry11Bb1 gene from Bacillus thuringiensis subsp. medellin and toxicity analysis of its encoded protein. Biochimica et Biophysica Acta, 1388: 267272.Google Scholar
Organisation des Nations unies pour l’alimentation et l’agriculture. 1967. Report of the first session of the FAO panel of experts on integrated pest control. Report PL/1967/M/7, September 18-22, Plant Production and Protection Division, Food and Agriculture Organization, Rome, Italy.Google Scholar
Organisation mondiale de la Santé. 1982. Manual on environmental management for mosquito control with special emphasis on malaria vectors. World Health Organization Offset Publication, 66: 1283.Google Scholar
Organisation mondiale de la Santé. 1989. DDT and its derivatives—environmental aspects. Environmental Health Criteria, 83: 198.Google Scholar
Organisation mondiale de la Santé. 2005. Guidelines for laboratory and field testing of mosquito larvicides. WHO/CDS/WHOPES/GCDPP/2005.13. World Health Organization, Geneva, Switzerland.Google Scholar
Organisation mondiale de la Santé. 2012. Global strategy for dengue prevention and control 2012–2020 [en ligne]. Disponible sur http://www.who.int/iris/handle/10665/75303#sthash.SEToW8XH.dpuf [consulté le 8 avril 2014].Google Scholar
Orlova, M.V., Smirnova, T.A., Ganushkina, L.A., Yacubovich, V.Y., et Azizbekyan, R.R. 1998. Insecticidal activity of Bacillus laterosporus . Applied and Environmental Microbiology, 64: 27232725.Google Scholar
Otieno-Ayayo, Z.N., Zaritsky, A., Wirth, M.C., Manasherob, R., Khasdan, V., Cahan, R., et Ben-Dov, E. 2008. Variations in the mosquito larvicidal activities of toxins from Bacillus thuringiensis ssp. israelensis . Environmental Microbiology, 10: 21912199.Google Scholar
Paillot, A. 1933. L’infection chez les insectes: immunité et symbiose. G. Patissier, Trévoux, France.Google Scholar
Paris, M., Tetreau, G., Laurent, F., Lelu, M., Després, L., et David, J.-P. 2011. Persistence of Bacillus thuringiensis israelensis (Bti) in the environment induces resistance to multiple Bti toxins in mosquitoes. Pest Management Science, 67: 122128.Google Scholar
Park, H-W., Bideshi, D.K., et Federici, B.A. 2010. Properties and applied use of the mosquitocidal bacterium, Bacillus sphaericus . Journal of Asia-Pacific Entomology, 13: 159168.Google Scholar
Patterson, R.S., Weidhaas, D.E., Ford, H.R., et Lofgren, C.S. 1970. Suppression and elimination of an island population Culex pipiens quinquefasciatus with sterile males. Science, 168: 13681370.Google Scholar
Paupy, C., Delatte, H., Bagny, L., Corbel, V., et Fontenille, D. 2009. Aedes albopictus, an arbovirus vector: from the darkness to the light. Microbes and Infection, 11: 11771185.Google Scholar
Pereira, C.R., de Paula, A.R., Gomes, S.A., Pedra, P.C.O., et Samuels, R.I. 2009. The potential of Metarhizium anisopliae and Beauveria bassiana isolates for the control of Aedes aegypti (Diptera: Culicidae) larvae. Biocontrol Science and Technology, 19: 881886.Google Scholar
Porter, A.G. 1996. Mosquitocidal toxins, genes and bacteria: the hit squad. Parasitology Today, 12: 175179.Google Scholar
Prescott, L.M., Harley, J.P., Klein, D.A., Bacq-Calberg, C.M., et Dusart, J. 2003. Microbiologie. De Boeck Université, Bruxelles, Belgique.Google Scholar
Priyanka, et Prakash, S. 2003. Laboratory efficacy tests for fungal metabolites of Chrysosporium tropicum against Culex quinquefasciatus . Journal of the American Mosquito Control Association, 19: 404407.Google Scholar
Protopopoff, N., Van Herp, M., Maes, P., Reid, T., Baza, D., D’Alessandro, U., et al. 2007. Vector control in a malaria epidemic occurring within a complex emergency situation in Burundi: a case study. Malaria Journal, 6: 93. doi: 10.1186/1475-2875-6-93.Google Scholar
Quesada-Moraga, E. et Vey, A. 2011. Intra-specific variation in virulence and in vitro production of macromolecular toxins active against locust among Beauveria bassiana strains and effects of in vivo and in vitro passage on these factors. Biocontrol Science and Technology, 13: 323340.Google Scholar
Raghavendra, K., Sharma, P., et Dash, A.P. 2008. Biological control of mosquito populations through frogs: opportunities & constraints. Indian Journal of Medical Research, 128: 2225.Google Scholar
Randolph, S.E. et Rogers, D.J. 2010. The arrival, establishment and spread of exotic diseases: patterns and predictions. Nature Reviews Microbiology, 8: 361371.Google Scholar
Ranson, H., N’Guessan, R., Lines, J., Moiroux, N., Nkuni, Z., et Corbel, V. 2011. Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends in Parasitology, 27: 9198.Google Scholar
Rattner, B.A. 2009. History of wildlife toxicology. Ecotoxicology, 18: 773783.Google Scholar
Ravensberg, W.J. 2011. A roadmap to the successful development and commercialization of microbial pest control products for control of arthropods. Progress in Biological Control, 10: 357376.Google Scholar
Regnault-Roger, C. 2005. Enjeux phytosanitaires pour l’agriculture et l’environnement. Tec & Doc – Lavoisier, Paris, France.Google Scholar
Reiter, P. 2001. Climate change and mosquito-borne disease. Environmental Health Perspectives, 109: 141161.Google Scholar
Resnik, D.B. 2012. Ethical issues in field trials of genetically modified disease-resistant mosquitoes [en ligne]. Developing World Bioethics. doi: 10.1111/dewb.12011.Google Scholar
Rey, J.R., Walton, W.E., Wolfe, R.J., Roxanne, C., O’Connell, S.M., Berg, J., Sakolsky-Hoopes, G.E., et Laderman, A.D. 2012. North American wetlands and mosquito control. International Journal of Environmental Research and Public Health, 9: 45374605.CrossRefGoogle ScholarPubMed
Riaz, M.A., Chandor-Proust, A., Dauphin-Villemant, C., Poupardin, R., Jones, C.M., Strode, C., et al. 2013. Molecular mechanisms associated with increased tolerance to the neonicotinoid insecticide imidacloprid in the dengue vector Aedes aegytpi . Aquatic Toxicology, 126: 326337.Google Scholar
Ricci, I., Damiani, C., Rossi, P., Capone, A., Scuppa, P., Cappelli, A., et al. 2011. Mosquito symbioses: from basic research to the paratransgenic control of mosquito-borne diseases. Journal of Applied Entomology, 135: 487493.CrossRefGoogle Scholar
Rivero, A., Vézilier, J., Weill, M., Read, A.F., et Gandon, S. 2010. Insecticide control of vector-borne diseases: when is insecticide resistance a problem? Public Library of Science Pathogens, 6(8): e1001000. doi: 10.1371/journal.ppat.1001000.Google Scholar
Roberts, J.R., Karr, C.J., Paulson, J.A., Brock-Utne, A.C., Brumberg, H.L., Campbell, C.C., et al. 2012. Pesticide exposure in children. Pediatrics, 130(6): e1765e1788. doi:10.1542/peds.2012-2758.Google Scholar
Rodriguez, M.M., Bisset, J.A., et Fernandez, D. 2007. Levels of insecticide resistance and resistance mechanisms in Aedes aegypti from some Latin American countries. Journal of the American Mosquito Control Association, 23: 420429.Google Scholar
Rosas-Garcia, N.M. 2009. Biopesticide production from Bacillus thuringiensis: an environmentally friendly alternative. Recent Patents on Biotechnology, 3: 2836.Google Scholar
Rose, R.I. 2001. Pesticides and public health: integrated methods of mosquito management. Emerging Infectious Diseases, 7: 1723.Google Scholar
Sahayaraj, K. et Namasivayam, S.K.R. 2008. Mass production of entomopathogenic fungi using agricultural products and by products. African Journal of Biotechnology, 7: 19071910.Google Scholar
Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., et al. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 62: 775806.Google Scholar
Scholte, E.-J., Den Hartog, W., Dik, M., Schoelitsz, B., Brooks, M., Schaffner, F., et al. 2010. Introduction and control of three invasive mosquito species in the Netherlands, July-October 2010. Eurosurveillance, 15(45). Disponible sur: http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19710 [consulté le 15 Décembre 2012].Google Scholar
Scholte, E.-J., Knols, B.G.J., Samson, R.A., et Takken, W. 2004. Entomopathogenic fungi for mosquito control: a review. Journal of Insect Science, 4: 19.Google Scholar
Scholte, E.-J., Takken, W., et Knols, B.G.J. 2003. Infection of malaria (Anopheles gambiae s.s.) and filariasis (Culex quinquefasciatus) vectors with the entomopathogenic fungus Metarhizium anisopliae . Malaria journal, 2: 29. Disponible sur http://www.malariajournal.com/content/2/1/29 [consulté le 1 avril 2012].Google Scholar
Schrank, A. et Vainstein, M.H. 2010. Metarhizium anisopliae enzymes and toxins. Toxicon, 56: 12671274.CrossRefGoogle ScholarPubMed
Seleena, P. et Lee, H.L. 1998. Mosquitocidal bacteria isolated from Malaysia. Israel Journal of Entomology, 32: 155158.Google Scholar
Seleena, P., Lee, H.L., Chooi, K.H., et Junaidih, S. 2004. Space spraying of bacterial and chemical insecticides against Anopheles balabacensis basis for the control of malaria in Sabah, East Malaysia. The Southeast Asian Journal of Tropical Medicine and Public Health, 35: 6878.Google Scholar
Seye, F., Faye, O., Ndiaye, M., Njie, E., et Afoutou, M. 2009. Pathogenicity of the fungus, Aspergillus clavatus, isolated from the locust, Oedaleus senegalensis, against larvae of the mosquitoes Aedes aegypti, Anopheles gambiae and Culex quinquefasciatus . Journal of Insect Science, 9: 17. Disponible sur http://www.insectscience.org/9.53/i1536-2442-9-53.pdf [consulté le 15 décembre 2012].Google Scholar
Seye, F. et Ndiaye, M. 2008. Compatibilité entre Aspergillus clavatus (Hyphomycetes) et l’huile de neem (Azadirachta indica) contre le moustique vecteur de filarioses Culex quinquefasciatus (Say, 1823) (Diptera: Culicidae). Bacteriologia, virusologia, parazitologia, epidemiologia, 53: 4348.Google Scholar
Seye, F., Ndiaye, M., Faye, O., et Afoutou, J.M. 2012. Evaluation of entomopathogenic fungus Metarhizium anisopliae formulated with suneem (neem oil) against Anopheles gambiae s.l. and Culex quinquefasciatus adults. Malaria Chemotherapy, Control & Elimination, 1: 16. doi: 10.4303/icce/235494.Google Scholar
Seye, F., Ndione, R.D., Touré, M., Ndiaye, M., Boukraa, S., Bawin, T., et al. 2013. Laboratory and semi-field environment tests for the control efficacy of Metarhizium anisopliae formulated with neem oil (suneem) against Anopheles gambiae s.l. adult emergence. Academia Journal of Biotechnology, 1: 4652.Google Scholar
Shaalan, E.A.S. et Canyon, D.V. 2009. Aquatic insect predators and mosquito control. Tropical Biomedicine, 26: 223261.Google Scholar
Shah, P.A. et Pell, J.K. 2003. Entomopathogenic fungi as biological control agents. Applied Microbiology and Biotechnology, 61: 413423.Google Scholar
Singh, G. et Prakash, S. 2011. Studies on fungal cultural filtrates against adult Culex quinquefasciatus (Diptera: Culicidae) a vector of filariasis. Journal of Parasitology Research. Disponible sur http://dx.doi.org/10.1155/2011/147373 [consulté le 10 novembre 2013].Google Scholar
Singh, G. et Prakash, S. 2012. Lethal effects of Aspergillus niger against mosquitoes vector of filaria, malaria, and dengue: a liquid mycoadulticide [en ligne]. The Scientific World Journal. Disponible sur http://dx.doi.org/10.1100/2012/603984 [consulté le 10 novembre 2013].Google Scholar
Soberon, M., Fernandez, L.E., Perez, C., Gill, S.S., et Bravo, A. 2007. Mode of action of mosquitocidal Bacillus thuringiensis toxins. Toxicon, 49: 597600.Google Scholar
Specht, R., Han, B., Wickramasinghe, S.R., Carlson, J.O., Czermak, P., Wolf, A., et Reif, O.-W. 2004. Densonucleosis virus purification by ion exchange membranes. Biotechnology and Bioengineering, 88: 465473.Google Scholar
Srivastava, C.N., Maurya, P., Sharma, P., et Mohan, L. 2009. Prospective role of insecticides of fungal origin. Entomological Research, 39: 341355.Google Scholar
St. Leger, R.J. et Wang, C. 2010. Genetic engineering of fungal biocontrol agents to achieve greater efficacy against insect pests. Applied Microbiology and Biotechnology, 85: 901907.Google Scholar
Sucharit, S. 1993. Recent advances in vector control in filariasis. The Southeast Asian Journal of Tropical Medicine and Public Health, 24: 6468.Google Scholar
Suchman, E. et Carlson, J. 2004. Production of mosquito densonucleosis viruses by Aedes albopictus C6/36 cells adapted to suspension culture in serum-free protein-free media. In Vitro Cellular & Developmental Biology – Animal, 40: 7475.Google Scholar
Temu, E.A., Maxwell, C., Munyekenye, G., Howard, A.F.V., Munga, S., Avicor, S.W., et al. 2012. Pyrethroid resistance in Anopheles gambiae, in Bomi County, Liberia, compromises malaria vector control. Public Library of Science One, 7(9): e44986. doi: 10.1371/journal.pone.0044986.Google Scholar
Tetreau, G., Patil, C.D., Chandor-Proust, A., Salunke, B.K., Patil, S.V., et Després, L. 2013a. Production of the bioinsecticide Bacillus thuringiensis subsp. israelensis with deltamethrin increases toxicity towards mosquito larvae. Letters in Applied Microbiology, 57: 151156.Google Scholar
Tetreau, G., Stalinski, R., David, J.-P., et Després, L. 2013b. Monitoring resistance to Bacillus thuringiensis subsp. israelensis in the field by performing bioassays with each Cry toxin separately. Memorias do Instituto Oswaldo Cruz, 108: 894900.Google Scholar
Thomas, M.B. et Read, A.F. 2007. Can fungal biopesticides control malaria? Nature Microbiology Reviews, 5: 377383.Google Scholar
Tranchida, M.C., Riccillo, P.M., Micieli, M.V., Garcia, J.J., et Rodriguero, M.S. 2001. Isolation, characterization and evaluation of mosquitocidal activity of Lysinibacillus strains obtained from Culex pipiens larvae. Annals of Microbiology, 61: 575584.Google Scholar
van Frankenhuyzen, K. 2009. Insecticidal activity of Bacillus thuringiensis crystals proteins. Journal of Invertebrate Pathology, 101: 116.Google Scholar
Vasil’eva, V.L., Lebedinets, N.N., Gurval’, A.L., Chigir’, T.V., Buchatskii, L.P., et Kuznetsova, M.A. 1990. [The safety of the preparation viroden for vertebrate animals]. Mikrobiologicheskiĭ zhurnal, 52: 7379.Google Scholar
Vijayan, V. et Balaraman, K. 1991. Metabolites of fungi & actinocytes active against mosquito larvae. Indian Journal of Medical Research, 93: 115117.Google Scholar
Vyas, N., Dua, K.K., et Prakash, S. 2007. Efficacy of Lagenidium giganteum metabolites on mosquito larvae with reference to nontarget organisms. Parasitology Research, 101: 385390.Google Scholar
Weill, M., Luffalla, G., Mogensen, K., Chandre, F., Berthomieu, A., Berticat, C., et al. 2003. Insecticide resistance in mosquito vectors. Nature, 423: 136137.Google Scholar
Weiser, J. 1984. A mosquito-virulent Bacillus sphaericus in adult Simulium damnosum from northern Nigeria. Zentralblatt für Mikrobiologie, 139: 5760.Google Scholar
Wickremesinghe, R.S.B. et Mendis, C.L. 1980. Bacillus sphaericus spore from Sri Lanka demonstrating rapid larvicidal activity on Culex quinquefasciatus . Mosquito News, 40: 387389.Google Scholar
Wilke, A.B., Gomes, A., de, C., Natal, D., et Marrelli, M.T. 2009. Control of vector populations using genetically modified mosquitoes. Revista de Saude Publica, 43: 869874.Google Scholar
Wirth, M.C., Walton, W.E., et Federici, B.A. 2000. Cyt1A from Bacillus thuringiensis restores toxicity of Bacillus sphaericus against resistant Culex quinquefasciatus (Diptera: Culicidae). Journal of Medical Entomology, 37: 401407.Google Scholar
Woodring, J. et Davidson, E.W. 1996. Biological control of mosquitoes. Dans The biology of disease vectors. Sous la direction de B.J. Beaty et W.C. Marquardt. University Press of Colorado, Boulder, Colorado, Les États-Unis d’Amérique. Pp. 530548.Google Scholar
Yoda, T., Rakue, Y., et Mizota, T. 2004. Integrated pest management and surveillance of West Nile Virus infection in Louisiana, USA. Journal of Tokyo Medical University, 62: 212217.Google Scholar
Yu, S.J. 2008. The toxicology and biochemistry of insecticides. CRC Press, Boca Raton, Florida, Les États-Unis d’Amérique.Google Scholar
Zimmermann, G. 2007. Review on safety of the entomopathogenic fungus Metarhizium anisopliae . Biocontrol Science and Technology, 17: 879920.Google Scholar