Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T10:44:57.290Z Has data issue: false hasContentIssue false

ISOLATION, CHARACTERIZATION, AND CULTURE OF BACILLUS THURINGIENSIS FROM SOIL AND DUST FROM GRAIN STORAGE BINS AND THEIR TOXICITY FOR MAMESTRA CONFIGURATA (LEPIDOPTERA: NOCTUIDAE)1

Published online by Cambridge University Press:  31 May 2012

O.N. Morris*
Affiliation:
Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
V. Converse
Affiliation:
Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
P. Kanagaratnam
Affiliation:
Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
J.-C. Coté
Affiliation:
Horticultural Research and Development Centre, Agriculture and Agri-Food Canada, 430 Gouin Boulevard, St-Jean-sur-Richelieu, Quebec, Canada J3B 3E6
*
2 Author to whom all correspondence should be addressed.

Abstract

One hundred and two Bacillus thuringiensis Berliner strains isolated from six different types of Canadian soil and dust from different grain storage bins were cultured in shake flasks containing Great Northern White Bean (GNWB) protein concentrate (48.6% protein) as the main nitrogen source and dextrose as the main carbohydrate source. The resulting endotoxins were bioassayed against the bertha armyworm, Mamestra configurata Wlk. Thirty-three percent of soil and 66% of grain dust samples were positive for B. thuringiensis. The bacterium was found most frequently in organic-rich soil. The four most toxic soil isolates (which were seven to 15 times more toxic than the international standard, HD1-S-1980), and two nontoxic grain dust isolates were characterized by serological typing, biochemical analysis, carbohydrate utilization, plasmid profile analysis, protein profile analysis using sodium dodecyl sulfate – polyacrylamide gels, and polymerase chain reaction. Four isolates were determined to be subsp. kurstaki containing 130–140 and 63–65 kDa proteins, and two isolates (tested for comparison) were subsp. canadensis containing 31 and 38 kDa proteins. Nonpyramidal-crystal-producing strains did not grow well in culture media containing GNWB, degossypellized cotton seed meal (61% protein), defatted soy flour (55% protein), or peptone as nitrogen sources. Excess of GNWB protein concentrate in shake flask culture media (30 g/L) inhibited bacterial growth and reduced the toxicity of isolate A1.2/72 subsp. kurstaki, which was the most toxic soil isolate. Isolate A1.2/72, which was 15 times more toxic for bertha armyworm larvae than the international standard (HD1-S-1980), contained three cry1A genes (cry1Aa, cry1Ab, and cry1Ac), whereas HD-1 lacked the cry1Ab gene. This strain was synergistic with strain HD-551 subsp. kenyae (cry1A, cry2A, and cry1B genes) but not with HD-133 subsp. aizawai (cry1Ab, cry1B, cry1C, and cry1D genes) when the strains were cultured together in a cotton seed meal medium and fed to M. configurata. The growth rate, economic yield, and toxicity of the new isolate, A1.2/72, produced in a 14-L laboratory fermenter declined when the fermentation ingredients were tripled. We believe that the indigenous strain A1.2/72 warrants further research development for bertha armyworm control.

Résumé

Cent deux souches de Bacillus thuringiensis Berliner isolées de six types différents de sols et de poussières provenant de différentes cellules à grain au Canada ont été cultivées dans des fioles sous agitation renfermant du concentré de protéines de haricot blanc Great Northern (GNWB) (48,6% de proténes) comme source principale d’azote et du dextrose comme source principale de glucide. Les endotoxines obtenues ont été utilisées dans un biodosage chez la légionnaire bertha (Mamestra configurata Wlk.). Trente-trois pour cent des échantillons de sol et 66% des échantillons de poussière de grain renfermaient B. thuringiensis. La bactérie se trouvait le plus souvent dans des sols riches en matières organiques. Les quatre isolats de sol les plus toxiques (qui étaient 7 à 15 fois plus toxiques que l’étalon international HD1-S-1980) et deux isolats de poussière de grain non toxiques ont été charactérisés par un typage sérologique, l’analyse biochimique, l’utilisation des glucides, l’analyse du profil de plasmides, l’analyse du profil des protéines sur des gels de polyacrylamide en présence des SDS et l’analyse par l’amplification par la polymérase. Quatre isolats ont été identifiés comme étant subsp. kurstaki renfermant des protéines de 130–140 kDa et de 63–65 kDa et deux isolats (à des fins de comparaison) ont été identifiés comme étant subsp. canadensis renfermant des protéines de 31 et 38 kDa. Les souches produisant un cristal non pyramidal ne poussaient pas bien dans les milieux de culture renfermant du GNWB, de la farine de graine de coton dégossypolisée (61% de protéines), de la farine de soja dégraissée de GNWB dans les milieux de culture sous agitation (30 g/L) inhibait la croissance bactérienne et réduisait la toxicité de l’isolat A1.2/72, subsp. kurstaki, qui était l’isolat de sol le plus toxique. Cet isolat, qui était 15 fois plus toxique pour les larves de légionnaire bertha que l’étalon international (HD1-S-1980) renfermait trois gènes cry1A (cry1Aa, cry1Ab et cry1Ac) alors que HD-1 était dépourvu du gène cry1Ab. Cette souche agissait en synergie avec la souche HD-551 subsp. kenyae (gènes cry1A, cry1A et cry1B), mais non avec la souche HD-133 subsp. aizawai (gènes cry1Ab, cry1B, cry1C et cry1D) lorsque les souches étaients cultivées ensemble dans un milieu à base de farine de graine de coton et utilisées pour nourrir M. configurata. Le taux de croissance, le rendement économique et la toxicité du nouvel isolât (A1.2/72) produit dans un fermenteur de laboratoire de 14 L diminuaient lorsque les concentrations des ingrédients étaient triplées. Nous estimons que la souche indigène A1.2/72 mérite qu’on y consacre davantage de travaux de recherche et de développement pour la lutte contre la légionnaire bertha.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Contribution No. 1659 of the Cereal Research Centre, Agriculture and Agri-Food Canada, Winnipeg.

References

Abbott, W.S. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265267.CrossRefGoogle Scholar
Abdel-Hameed, A., Carlberg, G., and El-Tayed, O.M.. 1990. Studies on Bacillus thuringiensis H-14 strains isolated in Egypt. III. Selection of media for delta-endotoxin production. World Journal of Microbiology and Biotechnology 6: 313317.CrossRefGoogle Scholar
Arcas, J., Yantorno, O., Errarás, E., and Ertolo, R., 1984. A new medium for growth and delta-endotoxin production by Bacillus thuringiensis var. kurstaki. Biotechnology Letters. 6: 495500.CrossRefGoogle Scholar
Bauer, L.S., and Pankratz, H.S.. 1992. Ultrastructural effects of Bacillus thuringiensis var. san diego on midgut cells of the cottonwood leaf beetle. Journal of Invertebrate Pathology 60: 1525.CrossRefGoogle Scholar
Birnboim, H.C., and Doly, J.. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research 7: 1513.CrossRefGoogle ScholarPubMed
Carlton, B.C. 1988. Development of genetically improved strains of Bacillus thuringiensis. pp. 260279in Hedlin, P.A., Menn, J.J., and Hollingsworth, R.M. (Eds.), Biotechnology for Crop Protection. American Chemical Society, Washington, D.C.CrossRefGoogle Scholar
Carozzi, N.B., Kramer, V.C., Gregory, W.W., Evola, S., and Koziel, M.G. 1991. Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product profiles. Applied Environmental Microbiology 57: 30573061.Google Scholar
Chak, K.-F., and Ellar, D.J.. 1987. Cloning and expression of Escherichia coli of an insecticidal crystal protein gene from Bacillus thuringiensis var. aizawai HD-133. Journal of General Microbiology 133: 29212931.Google ScholarPubMed
Chilcott, C.N., and Wigley, P.J.. 1993. Isolation and toxicity of Bacillus thuringiensis from soil and insect habitats in New Zealand. Journal of Invertebrate Pathology 61: 244247.CrossRefGoogle Scholar
de Barjac, H. 1981. Identification of H-serotypes of Bacillus thuringiensis. pp. 3542in Burges, H.D. (Ed.), Microbial Control of Pests and Plant Diseases. Academic Press, London.Google Scholar
de Barjac, H., and Bonnefoi, A.. 1962. Essai de classification biochimique et sérologique de 24 souches de Bacillus de type B. thuringiensis. Entomophaga 1: 531.CrossRefGoogle Scholar
de Barjac, H., and Bonnefoi, A.. 1972. Presence of H antigenic subfactors in Serotype V of Bacillus thuringiensis with the description of a new type: B. thuringiensis var. canadensis. Journal of Invertebrate Pathology 20: 212213.CrossRefGoogle Scholar
De Lucca, A.J., Simonsen, J.G., and Larson, A.D.. 1981. Bacillus thuringiensis distribution in soils of the United States. Canadian Journal of Microbiology 27: 965–870.Google ScholarPubMed
Donovan, W.P., Dankocsik, C., and Gilbert, M.P.. 1988. Molecular characterization of a gene encoding a 72-kilodalton mosquito-toxic crystal protein from Bacillus thuringiensis subsp. israelensis. Journal of Bacteriology 170: 47324738.CrossRefGoogle ScholarPubMed
Dulmage, H.T. 1971. Production of δ-endotoxin by eighteen isolates of Bacillus thuringiensis serotype 3 in fermentation media. Journal of Invertebrate Pathology 18: 353358.Google Scholar
Dulmage, H.T., Correa, J.A., and Martinez, A.J.. 1970. Co-precipitation with lactose as a means of recovering the spore-crystal complex of Bacillus thuringiensis. Journal of Invertebrate Pathology 15: 1520.CrossRefGoogle Scholar
Gonzalez, J.M. Jr., and Carlton, B.C.. 1980. Patterns of plasmid DNA in crystalliferous and acrystalliferous strains of Bacillus thuringiensis. Plasmid 3: 9298.CrossRefGoogle ScholarPubMed
Haider, M.Z., and Mahmood, S.. 1990. Bacillus thuringiensis insecticidal delta-endotoxins: diversity of crystal proteins and its relatedness to the toxicity spectrum. Journal of Basic Microbiology 30: 251258.CrossRefGoogle Scholar
Höfte, H., and Whiteley, H.R.. 1989. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiology Review 53: 242255.CrossRefGoogle ScholarPubMed
Höfte, H., Van Rie, J., Jansens, S., Van Houtven, A., Vanderbruggen, H., and Vaeck, M.. 1988. Monoclonal antibody analysis of insecticidal spectrum of three types of Lepidoptera-specific insecticidal proteins of Bacillus thuringiensis. Applied and Environmental Microbiology 54: 20102017.Google Scholar
Holmberg, A., Stevanen, R., and Carlberg, G.. 1980. Fermentation of Bacillus thuringiensis for exotoxin production in process analysis study. Biotechnology and Bioengineering 22: 17071724.CrossRefGoogle Scholar
Huger, A.M., and von Krieg, A.. 1989. Über zwei Typhen parasporaler Kristalle beim käferwirksamen Stamm BI256–82 row Bacillus thuringiensis subspec. tenebrionis. Journal of Applied Entomology 108: 490497.CrossRefGoogle Scholar
Krieg, A. von, Huger, A.M., Langenbruch, G.A., and Schnetter, W.. 1983. Bacillus thuringiensis var. tenebrionis: Ein nesser, gegenüber lavven von Coleopteran Wirksamer Pathotyp. Zeitschrift fuer Angewandte Entomologie 96: 500508.CrossRefGoogle Scholar
Laemmli, U.K. 1970. Cleavage of structural proteins during assembly of the head of the bacteriophage T4. Nature (London) 227: 680685.CrossRefGoogle ScholarPubMed
Lee, H., Lee, J., Lee, K., Chung, J., de Barjac, H., Charles, J., Dumanoir, V.C., and Franchon, E.. 1994. New serovars of Bacillus thuringiensis: B. thurigiensis ser. Coreanensis (Serotype H25), B. thuringiensis ser. leesis (Serotype H33), and B. thuringiensis ser. konkukian (Serotype H34). Journal of Invertebrate Pathology 63: 217219.CrossRefGoogle Scholar
Maniatis, T., Fritsch, E.F., and Sambrook, J.. 1982. Molecular Cloning. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
Martin, A.W., and Travers, R.S.. 1989. Worldwide abundance and distribution of Bacillus thuringiensis isolates. Applied and Environmental Microbiology 55: 24372442.CrossRefGoogle ScholarPubMed
Martin, P.A.W. 1994. An iconoclastic view of Bacillus thuringiensis ecology. American Entomologist Summer: 8590.Google Scholar
Miyasono, M., Inagaki, S., Yamamoto, M., Ohba, K., Ishiguro, T., Takeda, R., and Hayashi, U.. 1994. Enhancement of delta-endotoxin by toxin-free spores of Bacillus thuringiensis against the Diamondback moth, Plutella xylostella. Journal of Invertebrate Pathology 63: 111112.CrossRefGoogle Scholar
Moar, W.J., Pusztai-Carey, M., and Mack, T.P.. 1995. Toxicity of purified proteins and the HD-1 strain from Bacillus thuringiensis against lesser cornstalk borer (Lepidoptera: Pyralidae). Journal of Economic Entomology 88: 606609.Google Scholar
Morris, O.N. 1983. Microorganisms isolated from forest insects of British Columbia. Journal of the Entomological Society of British Columbia 80: 2936.Google Scholar
Morris, O.N. 1986. Susceptibility of the bertha armyworm, Mamestra configurata (Lepidoptera: Noctuidae), to a commercial formulation of Bacillus thuringiensis var. kurstaki. The Canadian Entomologist 118: 473478.Google Scholar
Morris, O.N., Converse, V., and Kanagaratnam, P.. 1996. Effect of cultural conditions on spore-crystal yield and toxicity of Bacillus thuringiensis subsp. aizawai (HD-133). Journal of Invertebrate Pathology 67: 129136.Google Scholar
Morris, O.N., Trottier, M., Converse, V., and Kanagaratnam, P.. 1996. Toxicity of Bacillus thuringiensis subsp. aizawai for Mamestra configurata (Lepidoptera: Noctuidae). Journal of Economic Entomology 89: 359365.CrossRefGoogle Scholar
Ohba, J., and Aizawa, K.. 1986. Distribution of Bacillus thuringiensis in soils of Japan. Journal of Invertebrate Pathology 47: 277282.Google Scholar
Ohba, M., Uy, Y.M., and Aizawa, K.. 1987. Non-toxic isolates of Bacillus thuringiensis producing parasporal inclusions with unusual protein components. Letters in Applied Microbiology 5: 2932.Google Scholar
Padidam, M. 1992. The insecticidal crystal protein Cry 1Ac from Bacillus thuringiensis is highly toxic for Heliothis armigera. Journal of Invertebrate Pathology 59: 109111.CrossRefGoogle Scholar
Padua, L., and Federici, B.A. 1990. Development of mutants of the mosquitocidal bacterium Bacillus thuringiensis subspecies morrisoni (PG-14) toxic to lepidopterous and dipterous insects, FEMS Microbiology Letters 66: 257262.Google Scholar
Pearson, D., and Ward, O.P.. 1988. Effect of culture conditions on growth and sporulation of Bacillus thuringiensis subsp. israelensis and development of media for production of the protein crystal endotoxin. Biotechnology Letters 10: 451456.CrossRefGoogle Scholar
Pietrantonio, P.V., and Gill, S.S.. 1992. The parasporal inclusion of Bacillus thuringiensis subsp. shandongiensis: Characterization and screening for insecticidal activity. Journal of Invertebrate Pathology 59: 295302.Google Scholar
Poncet, S., Delécluse, A., Klier, A., and Rapoport, G.. 1995. Evaluation of synergistic interactions among CryIVA, CryIVB, and CryIVD toxic components of Bacillus thuringiensis subsp. israelensis crystals. Journal of Invertebrate Pathology 66: 131135.CrossRefGoogle Scholar
Salama, H.S., Foda, M.S., and Sharaby, A.. 1983. Biological activity of mixtures of Bacillus thuringiensis varieties against some cotton insects. Zeitschrift fuer Angewandte Entomologie 95: 6974.Google Scholar
Salama, H.S., Foda, M., Laki, F., and Ragaei, M. 1986. On the distribution of Bacillus thuringiensis and closely related Bacillus cereus in Egyptian soils and their activity against cotton insects. Angewandte Zoologie 3: 257265.Google Scholar
Scherrer, P., Luthy, P., and Trumpi, B., 1973. Production of δ-endotoxin by Bacillus thuringiensis as a function of glucose concentrations. Applied Microbiology 25: 644646.Google Scholar
Shim, J.C., Young, H.Y., Kyeong, N.Y., Sun, B.S., and Hyo, S.Y.. 1990. Isolation of Bacillus thuringiensis from soil and control effect on medically important insects. Korean Journal of Entomology 20: 179188.Google Scholar
Smirnoff, W.A. 1962. A staining method for differentiating spores, crystals and cells of Bacillus thuringiensis. Journal of Insect Pathology 4: 384386.Google Scholar
Smirnoff, W.A., and Juneau, A.. 1973. Quinze années de recherches sur les micro-organismes des insectes forestières de la Province de Québec (1957–1972). Annales de la Société Entomologique du Québec 18: 147181.Google Scholar
Travers, R.S., Martin, P.A.W., and Reicheldorfer, C.F., 1987. Selective process for efficient isolation of soil Bacillus spp. Applied and Environmental Microbiology 53: 12631266.Google Scholar
Trottier, M.R., Morris, O.N., and Dulmage, H.T.. 1988. Susceptibility of the bertha armyworm, Mamestra configurata (Lepidoptera, Noctuidae), to sixty-one strains from ten varieties of Bacillus thuringiensis. Journal of Invertebrate Pathology 51: 242249.CrossRefGoogle Scholar
Turnock, W.J. 1984. Mamestra configurata Walker, bertha armyworm (Lepidoptera: Noctuidae). pp. 4955in Biological Control Programs Against Insects and Weeds in Canada 1969–1980. Commonwealth Agricultural Bureau, London, U.K.Google Scholar
Vandekar, M., and Dulmage, H.T.. 1983. Submerged and deep tank fermentation. pp. 6194in Guidelines for Production of Bacillus thuringiensis H14. United Nations World Bank and World Health Organization, Special Programme for Research and Training in Tropical Diseases, Geneva, Switzerland.Google Scholar
Widner, W.R., and Whiteley, H.R.. 1989. Two highly related insecticidal crystal proteins of Bacillus thuringiensis subsp. kurstaki possess different host range specificities. Journal of Bacteriology 171: 965974.Google Scholar
Wylie, H.G., and Bucher, G.H.. 1977. The bertha armyworm, Mamestra configurata (Lepidoptera: Noctuidae). Mortality of immature stages on the rape crop, 1972–1975. The Canadian Entomologist 109: 823837.CrossRefGoogle Scholar
Zelazny, B., Stephan, D., and Hamacher, J.. 1994. Irregular crystal formation in some isolates of Bacillus thuringiensis. Journal of Invertebrate Pathology 63: 229234.CrossRefGoogle Scholar