Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-05T17:17:42.600Z Has data issue: false hasContentIssue false

Is leaf or sheath antibiosis involved in the resistance of maize composite EPS12 to Sesamia nonagrioides?

Published online by Cambridge University Press:  02 April 2012

A. Butrón*
Affiliation:
Misión Biológica de Galicia, Spanish Council for Scientific Research, Apartado 28, 36080 Pontevedra, Spain
B. Ordás
Affiliation:
Misión Biológica de Galicia, Spanish Council for Scientific Research, Apartado 28, 36080 Pontevedra, Spain
P. Revilla
Affiliation:
Misión Biológica de Galicia, Spanish Council for Scientific Research, Apartado 28, 36080 Pontevedra, Spain
G. Sandoya
Affiliation:
Misión Biológica de Galicia, Spanish Council for Scientific Research, Apartado 28, 36080 Pontevedra, Spain
A. Ordás
Affiliation:
Misión Biológica de Galicia, Spanish Council for Scientific Research, Apartado 28, 36080 Pontevedra, Spain
R.A. Malvar
Affiliation:
Misión Biológica de Galicia, Spanish Council for Scientific Research, Apartado 28, 36080 Pontevedra, Spain
*
1Corresponding author (e-mail: [email protected]).

Abstract

The pink stem borer (PSB) (Sesamia nonagrioides Lefèbvre, 1827; Lepidoptera: Noctuidae) is the main insect pest of maize (Zea mays L., Poaceae) in the Mediterranean area. Maize varieties partially resistant to PSB have been identified, but few studies have documented the mechanisms of resistance involved. The objectives of this research were to study the levels of leaf and sheath antibiosis of a maize population, EPS12, and determine whether antibiosis improved over the selection process for less stalk tunneling. A hybrid check and two Bacillus thuringiensis (Bt) hybrids were also examined. Several bioassays were carried out in a control chamber to evaluate antibiosis of maize leaves and sheaths against PSB larvae. Leaf antibiosis was significantly higher for EPS12 than for the hybrid check and sheath antibiosis was low for all non-Bt hybrids studied. We conclude that leaf and sheath antibiosis was not significantly improved during the selection process. Future efforts should look for other possible mechanisms of resistance, such as stem rind antibiosis.

Résumé

La sésamie du maïs (PSB; Sesamia nonagrioides Lefèbvre, 1827; Lepidoptera: Noctuidae) est le principal insecte ravageur du maïs (Zea mays L., Poaceae) de la région méditerranéenne. Des variétés de maïs partiellement résistantes à la sésamie (PSB) ont été identifiées, bien que peu d'études aient abordé les mécanismes de résistance impliqués. Les objectifs de notre recherche consistent à étudier l'antibiose au niveau des feuilles et de la gaine d'une population de maïs EPS12 et de vérifier s'il y a amélioration de l'antibiose lorsque nous faisons une sélection pour diminuer le taux de perçage des tiges. Nous avons aussi testé un témoin commercial hybride et deux hybrides Bt (Bacillus thuringiensis). Nous avons procédé à plusieurs bioessais dans des chambres de culture contrôlées afin de vérifier l'antibiose des feuilles et des gaines de maïs aux larves de sésamie (PSB). L'antibiose des feuilles est significativement plus élevée chez EPS12 que chez le témoin commercial hybride et celle des gaines est faible chez toutes les variétés non Bt étudiées. En conclusion, le processus de sélection n'améliore pas significativement l'antibiose des feuilles et des gaines. Les études futures devraient rechercher d'autres mécanismes de résistance, tels que l'antibiose du cortex de la tige.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andow, D.A., Olson, D.M., Hellmich, R.L., Alstad, D.N., and Hutchison, W.D. 2000. Frequency of resistance to Bacillus thuringiensis toxin Cry1Ab in an Iowa population of European corn borer (Lepidoptera: Carbidae). Journal of Economic Entomology, 93: 2630.Google Scholar
Anglade, P. 1961. Influence sur le rendement du maïs de l'infestation des tiges par la deuxième génération de la Sésamie (Sesamia nonagrioides Lef. Lép. Noctuidae). Méthodes de comparaison des hybrides par infestation artificielle. Annales des Epiphyties (Paris), 12: 357372.Google Scholar
Bergvinson, D.J., Hamilton, R.I., and Arnason, J.T. 1995. Leaf profile of maize resistance factors to European maize borer, Ostrinia nubilalis. Journal of Chemical Ecology, 21: 343354.Google Scholar
Butrón, A., Malvar, R.A., Cartea, M.E., Ordás, A., and Velasco, P. 1999. Resistance of maize inbreds to pink stem borer. Crop Science, 39: 102107.CrossRefGoogle Scholar
Cantor, A. 1997. Extending SAS survival analysis. Techniques for medical research. SAS Institute Inc., Cary, North Carolina.Google Scholar
Cartea, M.E., Malvar, R.A., Revilla, P., Ordás, A., and Álvarez, A. 1994. Seasonal occurrence and response of maize inbred lines to pink stem borer in the northwest of Spain. Maydica, 39: 191196.Google Scholar
Coors, J.G. 1987. Resistance to the European corn borer, Ostrinia nubilalis (Hübner), in maize, Zea mays L., as affected by soil silica, plant silica, structural carbohydrates, and lignin. In Genetic aspects of plant mineral nutrition. Edited by Gabelman, H.W. and Loughman, B.C.. Martinus Nijhoff Publishers, Dordrecht, the Netherlands. pp. 445456.CrossRefGoogle Scholar
Cordero, A., Malvar, R.A., Butrón, A., Revilla, P., Velasco, P., and Ordás, A. 1998. Population dynamics and life-cycle of corn borers in south Atlantic European coast. Maydica, 43: 512.Google Scholar
Eizaguirre, M. 1989. Inducción de la diapausa en Sesamia nonagrioides Lef. (Lepidoptera: Noctuidae) y su papel en el ciclo biológico de las comarcas de Lérida. Ph.D. thesis, Polytechnic University of Catalonia, Spain.Google Scholar
González-Núñez, M., Ortego, F., and Castañera, P. 2000. Susceptibility of Spanish populations of the corn borers Sesamia nonagrioides (Lepidoptera: Noctuidae) and Ostrinia nubilalis (Lepidoptera: Crambidae) to a Bacillus thuringiensis endotoxin. Journal of Economic Entomology, 93: 459463.CrossRefGoogle Scholar
Gould, F. 1998. Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annual Review of Entomology, 43: 701726.Google Scholar
Guthrie, W.D., Hawk, J.A., and Jarvis, J.L. 1989. Performance of maize inbred line DE811 in hybrid combinations: resistance to first and second generation European corn borers (Lepidoptera: Pyralidae). Journal of Economic Entomology, 82: 18041806.CrossRefGoogle Scholar
Gutiérrez, C., and Castañera, P. 1986. Mecanismos bioquímicos de resistencia a los taladros. IV Jornadas Técnicas sobre Maíz, Lérida, Spain. pp. 4761.Google Scholar
Huang, F., Buschman, L.L., Higgins, R.A., and McGaughey, W.H. 1999. Inheritance of resistance to Bacillus thuringiensis toxin (Dipel ES) in the European corn borer. Science (Washington, D.C.), 284: 965967.CrossRefGoogle ScholarPubMed
Malvar, R.A., Cartea, M.E., Revilla, P., Ordàs, A., Áalvarez, A., and Mansilla, J.P. 1993. Sources of resistance to pink stem borer and European corn borer in maize. Maydica, 38: 313319.Google Scholar
Ordás, B., Butrón, A., Soengas, P., Ordás, A., and Malvar, R.A. 2002. Antibiosis of the pith maize to Sesamia nonagrioides (Lepidoptera: Noctuidae). Journal of Economic Entomology, 95: 10441048.Google Scholar
SAS Institute Inc. 2000. SAS/STAT®. Version 8 [computer program]. SAS Institute Inc., Cary, North Carolina.Google Scholar
Tabashnik, B.E. 1994. Evolution of resistance to Bacillus thuringiensis. Annual Review of Entomology, 39: 2223.CrossRefGoogle Scholar
Vales, M.I., Malvar, R.A., Revilla, P., and Ordás, A. 2001. Recurrent selection for grain yield in two Spanish maize synthetic populations. Crop Science, 41: 1519.CrossRefGoogle Scholar
Velasco, P., Revilla, P., Malvar, R.A., Butrón, A., and Ordás, A. 2002. Resistance to corn borers in crosses between sweet and fi eld corn populations. Journal of the American Society for Horticultural Science, 127: 689692.Google Scholar
Yan, W., and Kang, M.S. 2003. GGE biplot analysis: a graphical tool for breeders, geneticists, and agronomists. CRC Press, Boca Raton, Florida.Google Scholar