Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T11:37:00.501Z Has data issue: false hasContentIssue false

INVITATION PAPER (C.P. ALEXANDER FUND): FORAGING OF INDIVIDUAL WORKERS IN RELATION TO COLONY STATE IN THE SOCIAL HYMENOPTERA

Published online by Cambridge University Press:  31 May 2012

Paul Schmid-Hempel
Affiliation:
ETH Züurich, Institute of Terrestrial Ecology, Grabenstrasse 3, CH–8952 Schlieren (Zürich), Switzerland
Mark L. Winston
Affiliation:
Simon Fraser University, Department of Biological Sciences, Burnaby, British Columbia, Canada V5A 1S6
Ron C. Ydenberg
Affiliation:
Simon Fraser University, Department of Biological Sciences, Burnaby, British Columbia, Canada V5A 1S6

Abstract

Workers of social insects are members of colonies that survive and reproduce together. Therefore, the behavioral activities of individual workers should be integrated with colony state. We here summarize and discuss the relationship between colony state and foraging behavior of individual workers under the provisional assumption that the colony is a unit. We argue that colony state can be described by a number of variables that should relate to fitness components in order to be meaningful. Among the possible candidates, colony population size seems to have an overriding importance in many respects, as shown by its relation to fitness components such as survival probability and reproductive performance. Other important variables include colony demography, i.e. caste or size distributions, nutritional status, or queen number. Each of these variables has been shown to affect fitness components; however, the evidence is rather scanty. We also discuss the evidence that variation in colony state variables relates to variation in individual worker behavior. Nutritional status (i.e. low or high levels of food stores) and colony size have been shown repeatedly to affect individual behavior. However, most of the evidence comes from the honey bee. Some studies suggest that behavioral responses are hierarchically structured. More work needs to be done to investigate the actual mechanisms of integration of individual behavior with colony state. Some knowledge has accumulated about the processes that govern recruitment to food sources. We conclude this review by discussing some concepts and problems for further research. These include the concept of a preferred colony state to which the colony should return after disturbance through the behavioral activities of the workers. Further theoretical elaboration and empirical investigations may help to elucidate whether this concept is useful and necessary. A largely neglected issue concerns the number versus effort problem, i.e. whether individuals should work harder or more workers should be allocated to a task that is in demand. We propose a simple scenario that suggests testable predictions. Finally, we discuss how colony state, individual work load, and the dependence of worker mortality rate on activity level may interact to generate different short-term foraging strategies that workers should adopt.

Résumé

Chez les insectes sociaux, les ouvrières appartiennent à une colonie où la survie et la reproduction sont des phénomènes collectifs. Les activités comportementales de chacune des ouvrières font donc partie intégrante de l’état de la colonie. La relation entre l’état de la colonie et le comportement de quête de nourriture d’ouvrières particulières est définie et examinée dans le cadre de l’hypothèse selon laquelle la colonie fonctionne comme une unité. Nous croyons que l’état de la colonie peut être décrit par un certain nombre de variables qui n’ont de sens que si elles sont reliées aux composantes du "fitness." Parmi les variables possibles, la taille de la population dans la colonie semble avoir une importance capitale par plusieurs aspects, comme le démontre sa relation avec des composantes telles que la probabilité de survie et le succès de la reproduction. Parmi les autres variables importantes, il faut mentionner la démographie de la colonie, i.e. la répartition selon la caste ou la taille, le statut alimentaire ou le nombre de reines. Chacune de ces variables a un effet sur les composantes du "fitness," mais cependant les preuves en sont plutôt faibles. Nous examinons aussi l’hypothèse d’une relation entre les fluctuations des variables associées à l’état de la colonie et celles du comportement individuel des ouvrières. Le statut alimentaire (i.e. quantités faibles ou élevées de réserves de nourriture) et la taille de la colonie ont été reconnus à plusieurs reprises comme des facteurs qui affectent le comportement individuel. Cependant, les preuves à l’appui de cette affirmation viennent toutes d’études sur l’Abeille domestique. Certains travaux indiquent que les réactions comportementales dépendent de la hiérarchie sociale. Les mécanismes réels de la contribution des comportements individuels à l’état de la colonie doivent être soumis à des études plus poussées. Les processus qui régissent le recrutement aux sources de nourriture sont mieux connus maintenant. Nous concluons cette synthèse par l’examen de certaines théories et de problèmes qui devront être étudiés plus en détails, en particulier la théorie d’un état optimal que la colonie devrait retrouver après les perturbations entraînées par les activités comportementales des ouvrières. Des spéculations théoriques et des recherches empiriques pourront déterminer si cette théorie est nécessaire, voire utile. La question du nombre-versus-l’effort est toujours fortement négligée; chaque individu devrait-il travailler plus fort ou serait-il préférable que plus d’ouvrières soient affectées à là tâche requise. Nous proposons ici un scénario simple qui suppose des prédictions vérifiables par des tests. Finalement, nous examinons comment l’état de la colonie, la charge de travail de chaque individu et la relation entre le taux de mortalité et la somme de travail peuvent se combiner pour donner lieu à de nouvelles stratégies de recherche de nourriture à court terme que pourraient adopter les ouvrières.

[Traduit par la rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agboga, C. 1989. The role of the queen in the behavior of immature workers of ants Aphaenogaster rudis. Insectes Sociaux 36: 156160.Google Scholar
Al-Tikrity, W.S., Benton, A.W., Hillman, R.C., and Clarke, W.W.. 1972. The relationship between the amount of unsealed brood in honey bee colonies and their pollen collection. Journal of Apicultural Research 11: 912.CrossRefGoogle Scholar
Archer, M.E. 1981. A simulation model for the colonial development of Paravespula vulgaris (L.) and Dolichovespula sylvestris (Scopoli) (Hymenoptera, Vespidae). Melanderia 36: 59 pp.Google Scholar
Bailey, K.H., and Polis, G.A.. 1987. Optimal and central-place foraging theory applied to a desert harvester ant, Pogonomyrmex californicus. Oecologia 72: 440448.Google Scholar
Barker, R.J. 1971. The influence of food inside the hive on pollen collection. Journal of Apiculture Research 10: 2326.CrossRefGoogle Scholar
Barnard, C.J., and Brown, C.A.J.. 1985. Risk-sensitive foraging in common shrews Sorex araneus L. Behavioural Ecology and Sociobiology 16: 161164.CrossRefGoogle Scholar
Bartz, S.H., and Hölldobler, B.. 1982. Colony founding in Myrmecocystus mimicus Wheeler (Hymenoptera: Formicidae) and the evolution of foundress associations. Behavioural Ecology and Sociobiology 10: 137147.CrossRefGoogle Scholar
Bourke, A.F.G. 1988. Worker reproduction in the higher eusocial hymenoptera. Quarterly Review of Biology 63: 291311.Google Scholar
Brandao, C.R.F. 1983. Sequential ethograms along colony development of Odontomachus affinis (Hymenoptera, Formicidae, Ponerinae). Insectes Sociaux 30: 193203.CrossRefGoogle Scholar
Brian, M. V. 1953. Brood rearing in relation to worker number in the ant Myrmica. Physiological Zoology 26: 355366.CrossRefGoogle Scholar
Brian, M. V. 1980. Social control over sex and caste in bees, wasps and ants. Biological Review 55: 379415.CrossRefGoogle Scholar
Brian, M. V. 1983. Social Insects. Chapman and Hall, London. 377 pp.CrossRefGoogle Scholar
Brian, M. V. 1988. The behaviour and fecundity of queens of different ages in synthetic groups of Myrmica rubra L. with different worker populations. Insectes Sociaux 35: 153166.CrossRefGoogle Scholar
Brian, M.V., Clarke, R.T., and Jones, R.M.. 1981. A numerical model of an ant society. Journal of Animal Ecology 50: 387405.CrossRefGoogle Scholar
Brian, M.V., and Jones, R.M.. 1980. Worker population structure and gyne production in the ant Myrmica. Behavioural Ecology and Sociobiology 7: 281286.CrossRefGoogle Scholar
Bulmer, M.G. 1983. Sex ratio evolution in social Hymenoptera under worker control with behavioural dominance. American Naturalist 121: 899902.CrossRefGoogle Scholar
Cagniant, H. 1988. Experimental study of the role of workers in the development of alate forms in the ant Cataglyphis cursor (Fonsc.) (Hymenoptera, Formicidae). Insectes Sociaux 35: 271292.CrossRefGoogle Scholar
Calabi, P., and Traniello, J.F.A.. 1989. Social organization in the ant Pheidole dentata. Physical and temporal caste ratios lack ecological correlates. Behavioural Ecology and Sociobiology 24: 6978.CrossRefGoogle Scholar
Caraco, T., Martindale, S., and Whitham, T.S.. 1980. An empirical demonstration of risk-sensitive foraging preferences. Animal Behaviour 28: 820830.CrossRefGoogle Scholar
Caroll, C.R., and Janzen, D.H.. 1973. Ecology of foraging by ants. Annual Review of Ecology and Systematics 4: 231257.CrossRefGoogle Scholar
Cartar, R.V. 1991. Colony energy requirements affect response to predation risk in foraging bumble bees. Ethology 87: 9096.CrossRefGoogle Scholar
Cartar, R. V., and Dill, L.M.. 1990 a. Colony energy requirements affect the foraging currency of bumble bees. Behavioural Ecology and Sociobiology 27: 377383.CrossRefGoogle Scholar
Cartar, R. V., and Dill, L.M.. 1990 b. Why are bumble bees risk-sensitive foragers? Behavioural Ecology and Sociobiology 26: 121127.CrossRefGoogle Scholar
Cartar, R. V., and Dill, L.M.. 1991. Costs of energy shortfall for bumble bee colonies: Predation, social parasitism, and brood development. The Canadian Entomologist 123: 283294.CrossRefGoogle Scholar
Cherret, J.M., and Peregrine, J.D.. 1976. A review of the status of leaf-cutting ants and their control. Annals of Applied Biology 84: 124133.CrossRefGoogle Scholar
Cole, B.J. 1984. Colony efficiency and the reproductivity effect in Leptothorax allardycei (Mann). Insectes Sociaux 31: 403407.CrossRefGoogle Scholar
Collins, A. M., and Kubasek, K.J.. 1982. Field test of honey bee (Hymenoptera: Apidae) colony defensive behavior. Annals of the Entomological Society of America 75: 383387.CrossRefGoogle Scholar
Colombel, P. 1972. Recherches sur la biologie et l'ethologie d'Odontomachus haematodes L. (Hym., Formicoidea, Ponerinae): biologie des ouvrières. Insectes Sociaux 19: 171194.CrossRefGoogle Scholar
Daan, S., Masman, D., and Groenewold, L.. 1990. Avian basal metabolic rates: Their association with body composition and energy expenditure in nature. American Journal of Physiology 259: 333340.Google ScholarPubMed
Dew, H.E., and Michener, C.D.. 1981. Division of labor among workers of Polistes metricus (Hymenoptera: Vespidae): Laboratory foraging activities. Insectes Sociaux 28: 87101.CrossRefGoogle Scholar
Drent, R.H., and Daan, S.. 1980. The prudent parent: Energetic adjustment in avian breeding. Ardea 68: 225252.Google Scholar
Duchateau, M.J., and Velthuis, H.H.W.. 1988. Development and reproductive strategies in Bombus terrestris colonies. Behaviour 107: 186207.CrossRefGoogle Scholar
Duff, S.R., and Furgala, B.. 1984. Pollen trapping honey bee colonies in Minnesota. American Bee Journal 126: 686689.Google Scholar
Eckert, C.D. 1990. The relationship between colony state and individual foraging behavior in the honey bee, Apis mellifera L. M.Sc. thesis, Simon Fraser University, Burnaby, Vancouver, B.C.44 pp.Google Scholar
Eckert, J.E. 1933. The flight range of the honey bee. Journal of Agricultural Research 47: 257285.Google Scholar
Eischen, F.A. 1987. Overwintering performance of honeybee colonies heavily infested with Acarapis woodi (Rennie). Apidologie 18: 293304.CrossRefGoogle Scholar
Eischen, F.A., Cardoso-Tamez, D., Wilson, W.T., and Dietz, A.. 1989. Honey production of honey bee colonies infested with Acarapis woodi Rennie. Apidologie 20: 18.CrossRefGoogle Scholar
Eischen, F.A., Rothenbuhler, W.C., and Kulinevic, J.M.. 1982. Length of life and dry weight of worker honeybees reared in colonies with different worker–larvae ratios. Journal of Apicultural Research 21: 1925.CrossRefGoogle Scholar
Elmes, G.W. 1974. The effect of colony population on caste size in three species of Myrmica. Insectes Sociaux 21: 213230.CrossRefGoogle Scholar
Elmes, G.W., and Wardlaw, J.C.. 1982. A population study of the ants Myrmica sabuleti and Myrmica scabrinodis, living at two sites in the south of England. I: A comparison of colony populations. Journal of Animal Ecology 51: 651664.CrossRefGoogle Scholar
Elner, R.W., and Hughes, R.A.. 1978. Energy maximization in the diet of the shore crab, Carcinus maenas L. Ecology 68: 18561862.Google Scholar
Farrar, C.L. 1937. The influence of colony populations on honey production. Journal of Agricultural Research 12: 945954.Google Scholar
Farrar, C.L. 1944. Productive management of honeybee colonies in the Northern States. USDA Circular 702: 28 pp.Google Scholar
Farrar, C.L. 1947. Nosema losses in package bees as related to queen supersedure and honey yields. Journal of Economic Entomology 49: 333338.CrossRefGoogle Scholar
Fergusson, L.A., and Winston, M.L.. 1988. The influence of wax deprivation on temporal polyethism in the honey bee (Apis mellifera L.) colonies. Canadian Journal of Zoology 66: 19972001.CrossRefGoogle Scholar
Fewell, J.H., and Winston, M.L.. 1992. Colony state and regulation of pollen foraging in the honey bee, Apis mellifera L. Behavioural Ecology and Sociobiology 30: 387393.CrossRefGoogle Scholar
Fewell, J.H., Ydenberg, R.C., and Winston, M.L.. 1991. Individual foraging efforts as a function of colony population in the honey bee, Apis mellifera L. Animal Behaviour 42: 153155.CrossRefGoogle Scholar
Filmer, R.S. 1932. Brood area and colony size as factors in activity of pollination units. Journal of Economic Entomology 25: 336343.CrossRefGoogle Scholar
Fisher, R.M. 1988. Observations on the behaviours of three European cuckoo bumble bee species (Psithyrus). Insectes Sociaux 35: 341354.CrossRefGoogle Scholar
Fisher, R.M., and Pomeroy, N.C.. 1989. Incipient colony manipulation, Nosema incidence and colony productivity of the bumble bee Bombus terrestris (Hymenoptera, Apidae). Journal of the Kansas Entomological Society 62: 581589.Google Scholar
Fletcher, D.J.C., and Ross, K.G.. 1985. Regulation of reproduction in eusocial hymenoptera. Annual Review of Entomology 30: 319343.CrossRefGoogle Scholar
Fowler, H.G. 1985. Alloethism in the ant Camponotus pennsylvanicus (Hymenoptera: Formicidae). Entomologia Generalis 11: 6976.CrossRefGoogle Scholar
Fowler, H.G. 1986. Polymorphism and colony ontogeny in North American carpenter ants (Hymenoptera: Formicidae: Camponotus pennsylvanicus and Camponotus ferrugineus). Zoologisches Jahrbuch für Physiologie 90: 297316.Google Scholar
Franks, N.R. 1985. Reproduction, foraging efficiency and worker polymorphism in army ants. pp. 91107.in Hölldobler, B., and Lindauer, M. (Eds.), Experimental Behavioural Ecology and Sociobiology. Sinauer, Sunderland, MA.Google Scholar
Franks, N.R., and Bryant, S.. 1987. Rhythmical patterns of activity within nests of ants. pp. 122123.in Eder, J., and Rembold, H. (Eds.), Chemistry and Biology of Social Insects. J. Peperny, Munich.Google Scholar
Franks, N.R., Ireland, B., and Bourke, A.F.G.. 1990. Conflicts, social economics and life history strategies in ants. Behavioural Ecology and Sociobiology 27: 175181.CrossRefGoogle Scholar
Free, J.B. 1955. The division of labor within bumblebee colonies. Insectes Sociaux 2: 195212.CrossRefGoogle Scholar
Free, J.B. 1965. The effect on pollen collection of feeding honey bee colonies with sugar syrup. Journal of Agricultural Science 64: 167168.CrossRefGoogle Scholar
Free, J.B. 1967. Factors determining the collection of pollen by honeybee foragers. Animal Behaviour 15: 134144.CrossRefGoogle ScholarPubMed
Free, J.B. 1987. Pheromones of Social Insects. Chapman and Hall, London. 218 pp.Google Scholar
Free, J.B., and Racey, P.A.. 1968. The effect of the size of honeybee colonies on food consumption, brood rearing, and the longevity of the bees during winter. Entomologica Experimentalis et Applicata 11: 241249.CrossRefGoogle Scholar
Fresneau, D. 1984. Dévelopment ovarien et statut social chez une fourmi primitive Neoponera obscuricorni Emery (Hymenoptera: Formicidae: Ponerinae). Insectes Sociaux 31: 387402.CrossRefGoogle Scholar
Furgala, B., Duff, S., Aboulfarja, S., Ragsdale, D., and Hyser, R.. 1989. Some effects of the honey bee tracheal mite (Acarapis woodi) on non-migratory wintering honey bee (Apis mellifera) colonies in East Central Minnesota. American Bee Journal 129: 195197.Google Scholar
Gamboa, G.J. 1980. Comparative timing of brood development between multiple and single-foundress colonies of the paper wasp Polistes metricus. Ecological Entomology 5: 221225.CrossRefGoogle Scholar
Gary, N.E., and Page, R.E. Jr., 1989. Tracheal mites (Acari: Tarsonemidae) infestation effects of foraging and survivorship of honey bees (Hymenoptera: Apidae). Journal of Economic Entomology 82: 734739.CrossRefGoogle Scholar
Gentry, J.B. 1974. Responses to predation by colonies of harvester ants, Pogonomyrmex badius. Ecology 55: 13281338.CrossRefGoogle Scholar
Gibo, D.L. 1978. The selective advantage of foundress associations in Polistes fuscatus (Hymenoptera: Vespidae): A field study of the effects of predation on productivity. The Canadian Entomologist 110: 519540.CrossRefGoogle Scholar
Gilliam, J.F., and Fraser, D.F.. 1987. Habitat selection under predation hazard: Test of a model with foraging minnows. Ecology 68: 18561862.CrossRefGoogle Scholar
Glunn, F.I., Howard, D.F., and Tschinkel, W.R.. 1981. Food preferences in colonies of the fire ant, Solenopsis invicta. Insectes Sociaux 28: 217222.CrossRefGoogle Scholar
Goldberg, D.E. 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading, MA. 412 pp.Google Scholar
Gordon, D.M. 1986. The dynamics of the daily round of the harvester ant colony (Pogonomyrmex badius). Animal Behaviour 34: 14021419.CrossRefGoogle Scholar
Gordon, D.M. 1987. Group level dynamics in harvester-ants: Young colonies and the role of patrolling. Animal Behaviour 35: 833843.CrossRefGoogle Scholar
Gordon, D.M. 1989. Caste and change in social insects. pp. 5572.in Harvey, P.H., and Partridge, L. (Eds.), Oxford Surveys in Evolutionary Biology. Oxford University Press, Oxford.Google Scholar
Gordon, D.M. 1990. Behavioral flexibility and the foraging ecology of seed-eating ants. American Naturalist 138: 379411.CrossRefGoogle Scholar
Goss, S., and Deneubourg, J.. 1989. Autocatalysis as a source of synchronised rhythmical activity in social insects. Insectes Sociaux 35: 310315.CrossRefGoogle Scholar
Gray, B. 1971. A morphometric study of the ant species, Myrmecia dispar (Clark). Insectes Sociaux 18: 95110.CrossRefGoogle Scholar
Hamilton, W.D. 1964. The genetical evolution of social behavior. I., II. Journal of Theoretical Biology 7: 152.CrossRefGoogle Scholar
Harder, L.D. 1983. Flower handling efficiency of bumble bees: Morphological aspects of probing time. Oecologia 57: 274280.CrossRefGoogle ScholarPubMed
Harder, L.D. 1986. Effects of nectar concentration and flower depth of flower handling efficiency of bumble bees. Oecologia 69: 309315.CrossRefGoogle ScholarPubMed
Haydak, M.H. 1972. Cholesterol, pantothenic acid, pyridoxine and thiamine requirements of honeybees for brood rearing. Journal of Apicultural Research 11: 105109.CrossRefGoogle Scholar
Hellmich, R.L., and Rothenbuhler, W.C., 1986. Pollen hoarding and use by high and low-pollen hoarding honeybees during the course of brood rearing. Journal of Apicultural Research 25: 3034.CrossRefGoogle Scholar
Herbers, J.M. 1980. On caste ratios in ant colonies: Population responses to changing environments. Evolution 34: 575585.CrossRefGoogle ScholarPubMed
Herbers, J.M. 1981. Reliability theory and foraging in ants. Journal of Theoretical Biology 89: 175189.CrossRefGoogle Scholar
Herbers, J.M. 1982. Queen number and colony ergonomics in Leptothorax longispinosus. pp. 238242. in Breed, M.D., and Page, R.E. Jr., (Eds.), The Biology of Social Insects. Westview Press, Boulder, CO.Google Scholar
Herbers, J.M. 1983. Social organization in Leptothorax ants: Within and between species patterns. Psyche 90: 361386.CrossRefGoogle Scholar
Higo, H.A., Colley, S.J., Winston, M.L., and Slessor, K.N.. 1992. Effects of honey bee (Apis mellifera L.) queen mandibular gland pheromone on foraging and brood rearing. The Canadian Entomologist 124: 409418.CrossRefGoogle Scholar
Hillesheim, E., Koeniger, N., and Moritz, R.F.A.. 1989. Colony performance in honey bees (Apis mellifera capensis Esch) depends on the proportion of subordinate and dominant workers. Behavioural Ecology and Sociobiology 24: 291296.CrossRefGoogle Scholar
Hölldobler, B., and Wilson, E.O.. 1990. The Ants. Springer, Berlin. 732 pp.CrossRefGoogle Scholar
Houston, A.I. 1987. Optimal foraging by parent birds feeding dependent young. Journal of Theoretical Biology 124: 251274.CrossRefGoogle Scholar
Houston, A.I., Schmid-Hempel, P., and Kacelnik, A., 1988. Foraging strategy, worker mortality and the growth of the colony in social insects. American Naturalist 131: 107114.CrossRefGoogle Scholar
Jay, S.C. 1963. The development of honeybees in their cells. Journal of Apicultural Research 2: 117134.CrossRefGoogle Scholar
Jaycox, E.R. 1970 a. Honey bee queen pheromones and worker foraging behavior. Annals of the Entomological Society of America 63: 222228.CrossRefGoogle Scholar
Jaycox, E.R. 1970 b. Honey bee foraging behavior: Responses to queens, larvae, and extracts of larvae. Annals of the Entomological Society of America 63: 16891694.CrossRefGoogle Scholar
Jeanne, R.L. 1986. The organization of work in Polybia occidentalis: Costs and benefits of specialization in a social wasp. Behavioural Ecology and Sociobiology 19: 333342.CrossRefGoogle Scholar
Jeffree, E.P., and Allen, M.D.. 1956. The influence of colony size and Nosema disease on role of population loss in honeybee colonies in winter. Journal of Economic Entomology 49: 831843.CrossRefGoogle Scholar
Johnston, A.A., and Wilson, E.O.. 1985. Correlates of variation in the major/minor ratio of the ant Pheidole dentata (Hymenoptera: Formicidae). Annals of the Entomological Society of America 78: 811.CrossRefGoogle Scholar
Juanes, F., and Hartwick, E.B.. 1990. Prey size selection in Dungeness crabs: The effect of claw damage. Ecology 71: 744758.CrossRefGoogle Scholar
Kacelnik, A. 1984. Central-place foraging in starlings (Sturnus vulgaris). I. Patch residence time. Journal of Animal Ecology 53: 283300.CrossRefGoogle Scholar
Kirkwood, J.K. 1983. A limit to metabolic energy-intake in mammals and birds. Comparative Biochemistry (A) 75: 130.Google ScholarPubMed
Kistner, D.H. 1982. The social insects' bestiary. pp. 1244.in Hermann, H.R. (Ed.), Social Insects. Academic Press, London.Google Scholar
Kolmes, S.A. 1985. An ergonomic study of Apis mellifera (Hymenoptera: Apidae). Journal of the Kansas Entomological Society 58: 413421.Google Scholar
Kolmes, S.A. 1986. Have hymenopteran societies evolved to be ergonomically efficient? Journal of the New York Entomological Society 94: 447457.Google Scholar
Korst, P.J.A., and Velthuis, H.H.W.. 1982. The nature of trophallaxis in honeybees. Insectes Sociaux 29: 209221.CrossRefGoogle Scholar
Krebs, J.R., Stephens, D.W., and Sutherland, W.J.. 1983. Perspectives in optimal foraging. pp. 165216.in Brush, A.H., and Clark, G.A. Jr., (Eds.), Centennial Volume of the American Ornithologist's Union. Cambridge University Press, New York, NY.Google Scholar
Lee, P.C. 1985. Reproduction and growth of temperate evolved honey bee colonies (Apis mellifera). M.Sc. thesis, Simon Fraser University, Burnaby, Vancouver B.C.65 pp.Google Scholar
Lee, P.C., and Winston, M.L.. 1985 a. The effect of swarm size and date of issue on comb construction in newly founded colonies of honeybees (Apis mellifera). Canadian Journal of Zoology 63: 524527.CrossRefGoogle Scholar
Lee, P.C., and Winston, M.L.. 1985 b. The influence of swarm size on brood production and emergent worker weight in newly founded honey bee colonies (Apis mellifera L.). Insectes Sociaux 32: 96103.CrossRefGoogle Scholar
Lee, P.C., and Winston, M.L.. 1987. Effects of reproductive timing and colony size on the survival, offspring colony size and drone production in the honey bee (Apis mellifera). Ecological Entomology 12: 187195.CrossRefGoogle Scholar
Leonardsson, K. 1991. Predicting risk-taking behaviour from life-history theory using static optimization techniques. Oikos 60: 149154.CrossRefGoogle Scholar
Lipa, J.J., and Triggiani, O.. 1980. Crithidia bombi sp.n., a flagellated parasite of a bumble bee Bombus terrestris (Hymenoptera, Apidae). Acta Protozoologica 27: 287290.Google Scholar
Mangel, M., and Clark, C.W.. 1988. Dynamic Programming in Behavioral Ecology. Princeton University Press, Princeton, NJ. 308 pp.Google Scholar
Marceau, J., Boily, R., and Perron, J.M.. 1990. The relationship between hive productivity and honeybee flight activity. Journal of Apicultural Research 29: 2834.CrossRefGoogle Scholar
Maurizio, A. 1961. Lebensdauer und Altern bei der Honigbiene Apis mellifera. Gerontologia 5: 110128.CrossRefGoogle Scholar
McFarland, D.J. 1971. Feedback Mechanisms in Animal Behaviour. Academic Press, London. 397 pp.Google Scholar
McFarland, D.J., and Sibly, R.M.. 1972. “Unitary drives” revisited. Animal Behaviour 20: 548563.CrossRefGoogle ScholarPubMed
McNamara, J., and Houston, A.I.. 1986. The common currency for behavioral decisions. American Naturalist 127: 358378.CrossRefGoogle Scholar
Michener, C.D. 1964. Reproductive efficiency in relation to colony size in hymenopterous societies. Insectes Sociaux 11: 317341.CrossRefGoogle Scholar
Michener, C.D. 1974. The social behavior of the bees. Harvard University Press, Cambridge, MA. 404 pp.Google Scholar
Moeller, F.E. 1958. The relation between egg-laying capacity of queen bee and population and honey production of their colonies. American Bee Journal 98: 401402.Google Scholar
Moeller, F.E. 1961. The relationship between colony populations and honey production as affected by honeybee stock-lines. Production Research of USDA. 55 pp.Google Scholar
Moeller, F.E. 1972. Honey bee collection of corn pollen reduced by feeding pollen in the hive. American Bee Journal 112: 210212.Google Scholar
Montgomerie, R.D., MacEadie, J., and Harder, L.D.. 1984. What do foraging hummingbirds maximize? Oecologia 63: 357363.CrossRefGoogle ScholarPubMed
Morales, G. 1986. Effects of cavity size on demography of unmanaged colonies of honey bees (Apis mellifera). M.Sc. thesis, University of Guelph, Guelph, Ont.Google Scholar
Morse, R.A. (Ed.). 1978. Honey bee pests, predators, and disease. Cornell University Press, Ithaca, NY. 567 pp.Google Scholar
Müller, C.M., and Schmid-Hempel, P.. 1992. Variation in worker mortality and reproductive performance in the bumble bee, Bombus lucorum. Functional Ecology 6: 4856.CrossRefGoogle Scholar
Naumann, K., and Winston, M.L.. 1990. Effects of swarm type on temporal caste polyethism in the honey bee, Apis mellifera L. (Hymenoptera: Apidae). Insectes Sociaux 37: 5872.CrossRefGoogle Scholar
Nelson, D.L., and Jay, S.C.. 1972. Population growth and honey yield studies of package bee colonies in Manitoba. II. Colonies initiated with four package sizes on one date. Manitoba Entomologist 6: 1722.Google Scholar
Nixon, H.L., and Ribbands, C.R.. 1951. Food transmission within the honeybee community. Proceedings of the Royal Society (London) 140: 4350.Google Scholar
Oster, G.F., and Wilson, E.O.. 1978. Caste and Ecology in the Social Insects. Princeton University Press, Princeton, NJ. 352 pp.Google ScholarPubMed
Otis, G.W., Bath, J.B., Randall, D.L., and Grant, G.M.. 1988. Studies of the honey bee tracheal mite (Acarapis woodi) (Acari: Tarsonemidae) during winter. Canadian Journal of Zoology 66: 21222127.CrossRefGoogle Scholar
Packer, L. 1986. Multiple-foundress associations in a temperate population of Halictus ligatus (Hymenoptera: Halictidae). Canadian Journal of Zoology 64: 23252332.CrossRefGoogle Scholar
Parker, G.A., and Smith, J. Maynard. 1990. Optimality theory in evolutionary biology. Nature 348: 2733.CrossRefGoogle Scholar
Passera, L., Keller, L., and Suzzoni, J.P.. 1988. Control of brood male production in the argentine ant Iridomyrmex humilis (Mayr). Insectes Sociaux 35: 1933.CrossRefGoogle Scholar
Pendrel, B.A., and Plowright, R.C.. 1981. Larval feeding by adult bumblebee workers (Hymenoptera: Apidae). Behavioural Ecology and Sociobiology 8: 7176.CrossRefGoogle Scholar
Plowright, R.C., and Jay, S.C.. 1968. Caste differentiation in bumble bees: The determination of female size. Insectes Sociaux 15: 171192.CrossRefGoogle Scholar
Pomeroy, N., and Plowright, R.C.. 1982. The relation between worker numbers and the production of males and queens in the bumblebee Bombus perplexus. Canadian Journal of Zoology 60: 954957.CrossRefGoogle Scholar
Porter, S.D., and Jorgensen, C.D., 1981. Foragers of the harvester ant Pogonomyrmex owyheei—a disposable caste? Behavioural Ecology and Sociobiology 9: 247256.CrossRefGoogle Scholar
Porter, S.D., and Tschinkel, W.R.. 1985 a. Fire ant polymorphism: The ergonomics of brood production. Behavioural Ecology and Sociobiology 16: 323336.CrossRefGoogle Scholar
Porter, S.D., and Tschinkel, W.R.. 1985 b. Fire ant polymorphism: Factors affecting worker size. Annals of the Entomological Society of America 78: 381386.CrossRefGoogle Scholar
Porter, S.D., and Tschinkel, W.R.. 1986. Adaptive value of nanitic workers in newly founded red imported fire ant colonies (Hymenoptera: Formicidae). Annals of the Entomological Society of America 79: 723726.CrossRefGoogle Scholar
Real, L. 1981. Uncertainty and plant-pollinator interactions: The foraging behavior of bees and wasps on artificial flowers. Ecology 62: 2062.CrossRefGoogle Scholar
Reeve, H.K., and Gamboa, G.J.. 1983. Colony activity integration in primitively eusocial wasps: The role of the queen (Polistes fuscatus, Hymenoptera: Vespidae). Behavioural Ecology and Sociobiology 13: 6374.CrossRefGoogle Scholar
Reeve, H.K., and Gamboa, G.J.. 1987. Queen regulation of worker foraging in paper wasps: A social feedback control system (Polistes fuscatus, Hymenoptera, Vespidae). Behaviour 102: 147167.CrossRefGoogle Scholar
Ribbands, C.R. 1953. The flight range of the honeybee. Journal of Animal Ecology 20: 220226.CrossRefGoogle Scholar
Rinderer, T.E. 1981. Volatiles from empty comb increase hoarding by the honeybee. Animal Behaviour 29: 12751276.CrossRefGoogle Scholar
Rinderer, T.E. 1982. Regulated nectar harvesting by the honeybee. Journal of Apicultural Research 21: 7487.CrossRefGoogle Scholar
Rinderer, T.E., and Baxter, J.R.. 1978. Effect of empty comb on hoarding behavior and honey production of the honey bee. Journal of Economic Entomology 71: 757759.CrossRefGoogle Scholar
Rinderer, T.E., and Elliott, K.D.. 1977. Influence of nosematosis on the hoarding behavior of the honeybees. Journal of Invertebrate Pathology 30: 110111.CrossRefGoogle Scholar
Rissing, S.W., and Pollock, G.B.. 1987. Queen aggression, pleometrotic advantage and brood raiding in the ant Veromessor pergandei (Hymenoptera: Formicidae). Animal Behaviour 35: 975981.CrossRefGoogle Scholar
Rissing, S.W., Pollock, G.B., Higgins, M.R., Hagen, R.H., and Smith, D.R.. 1989. Foraging specialization without relatedness or dominance among co-founding queens. Nature 338: 420422.CrossRefGoogle Scholar
Robinson, W.S., Nowogrodzki, R., and Morse, R.A.. 1989. The value of honey bees as pollinators of U.S. crops. American Bee Journal 129: 411423. 477487.Google Scholar
Röseler, P.-F. 1967. Arbeitsteilung und Drüsenzustände in Hummel-Völkern. Naturwisssenschaften 54: 146147.CrossRefGoogle Scholar
Ross, K., and Mathews, R.. 1990. The Social Biology of Wasps. Cornell University Press, Ithaca, NY. 522 pp.Google Scholar
Royce, L.A., and Rossignol, P.A.. 1990. Honeybee mortality due to tracheal mite parasitism. Parasitology 100: 147151.CrossRefGoogle ScholarPubMed
Salzemann, A., and Plateaux, L.. 1987. Reduced egg laying by workers of the ant Leptothorax nylanderi in presence of workers parasitized by a Cestoda. p. 45 in Eder, J., and Rembold, H. (Eds.), Chemistry and Biology of Social Insects. Peperny Verlag, München.Google Scholar
Schmid-Hempel, P. 1990. Reproductive competition and the evolution of work load in social insects. American Naturalist 135: 501526.CrossRefGoogle Scholar
Schmid-Hempel, P. 1991 a. The ergonomics of worker behavior in social insects. Advances in the Study of Behavior 20: 87134.CrossRefGoogle Scholar
Schmid-Hempel, P. 1991 b. Worker caste and adaptive demography. Journal of Evolutionary Biology 5: 112.CrossRefGoogle Scholar
Schmid-Hempel, P., Kacelnik, A., and Houston, A.I.. 1985. Honeybees maximize efficiency by not filling their crop. Behavioural Ecology and Sociobiology 17: 6166.CrossRefGoogle Scholar
Schmid-Hempel, P., and Schmid-Hempel, R.. 1984. Life duration and turnover of foragers in the ant Cataglyphis bicolor (Hymenoptera, Formicidae). Insectes Sociaux 31: 345360.CrossRefGoogle Scholar
Schmid-Hempel, P., and Wolf, R.J.. 1988. Foraging effort and life span in workers of social insects. Journal of Animal Ecology 57: 509522.CrossRefGoogle Scholar
Schmidt, J.O., Thoenes, S.C., and Levin, M.D.. 1987. Survival of honeybees, Apis mellifera (Hymenoptera: Apidae), fed various pollen sources. Annals of the Entomological Society of America 80: 176183.CrossRefGoogle Scholar
Schneirla, T.C. 1944. The reproductive functions of the army ant queen as pacemakers of the group behavior pattern. Journal of the New York Entomological Society 52: 153192.Google Scholar
Schoener, T.W. 1971. Theory of feeding strategies. Annual Review of Ecology and Systematics 2: 369404.CrossRefGoogle Scholar
Seeley, T.D. 1978. Life history strategy of the honey bee, Apis mellifera. Oecologia 32: 109118.CrossRefGoogle ScholarPubMed
Seeley, T.D. 1985. Honeybee Ecology. Princeton University Press, Princeton, NJ. 201 pp.CrossRefGoogle Scholar
Seeley, T.D. 1986. Social foraging in the honeybee: How colonies allocate foragers among patches of flowers. Behavioural Ecology and Sociobiology 19: 343354.CrossRefGoogle Scholar
Seeley, T.D. 1989. Social foraging in the honeybee: How nectar foragers assess their colony's nutritional status. Behavioural Ecology and Sociobiology 24: 181198.CrossRefGoogle Scholar
Seeley, T.D., and Visscher, P.K.. 1985. Survival of honeybees in cold climates: The critical timing of colony growth and reproduction. Ecological Entomology 10: 8188.CrossRefGoogle Scholar
Shykoff, J.A., and Schmid-Hempel, P.. 1991. Parasites delay worker reproduction in the bumblebees: Consequences for eusociality. Behavioral Ecology 2: 242248.CrossRefGoogle Scholar
Sibly, R.M., and McFarland, D.J.. 1974. A state-space approach to motivation. pp. 213250.in McFarland, D.J. (Ed.), Motivational Control Systems Analysis. Academic Press, London.Google Scholar
Smeeton, L. 1982. The effect of age on the production of reproductive eggs by workers of Myrmica rubra L. (Hymenoptera, Formicidae). Insectes Sociaux 29: 465476.CrossRefGoogle Scholar
Smirl, C.B., and Jay, S.S.. 1972. Population growth and honey yield studies of package bee colonies in Manitoba. I. Colonies initiated with two package sites on three dates. Manitoba Entomologist 6: 916.Google Scholar
Southerland, M.T. 1988. The effects of temperature and food on the growth of laboratory colonies of Aphaenogaster rudis Emery (Hymenoptera, Formicidae). Insectes Sociaux 35: 3040.CrossRefGoogle Scholar
Stephens, D.W., and Krebs, J.R.. 1986. Foraging Theory. Princeton University Press, Princeton, NJ. 247 pp.Google Scholar
Strassmann, J.E. 1985. Worker mortality and the evolution of castes in the social wasp Polistes exclamans. Insectes Sociaux 32: 275287.CrossRefGoogle Scholar
Strassmann, J.E., Queller, D.C., and Hughes, C.R.. 1988. Predation and the evolution of sociality in the paper wasp Polistes bellicosus. Ecology 69: 14971505.CrossRefGoogle Scholar
Strassmann, J.E., and Thomas, R.R.. 1980. An analysis of the interrelationships among nest variables in Polistes exclamans (Hymenoptera, Vespidae). Journal of the Kansas Entomological Society 53: 770780.Google Scholar
Sutcliffe, G.H., and Plowright, R.C.. 1988. The effects of food supply on adult size in the bumblebee Bombus terricola Kirby (Hymenoptera, Formicidae). The Canadian Entomologist 120: 10511058.CrossRefGoogle Scholar
Sylvester-Bradley, R., DeOliveira, L.A., and Bandeira, A. Gomez. 1982. Nitrogen fixation in Nasutitermes in Central Amazonia. pp. 240252.in Jaisson, P. (Ed.), Social Insects in the Tropics. Louis-Jean, Paris.Google Scholar
Tamm, S. 1989. Importance of energy costs in central place foraging by hummingbirds. Ecology 70: 195202.CrossRefGoogle Scholar
Taylor, F. 1977. Foraging behavior of ants: Experiments with two species of myrmecine ants. Behavioural Ecology and Sociobiology 2: 147167.CrossRefGoogle Scholar
Taylor, F. 1978. Foraging behavior of ants: Theoretical considerations. Journal of Theoretical Biology 71: 541565.CrossRefGoogle ScholarPubMed
Terada, Y., Garofalo, C.A., and Sakagami, S.F.. 1975. Age-survival curves of two eusocial bees (Apis mellifera and Plebeia droryana) in a subtropical climate with notes on polyethism in P. droryana. Journal of Apicultural Research 14: 161170.CrossRefGoogle Scholar
Theraulaz, G., Pratte, M., and Gervet, J.. 1988. Imaginal regulation of the life span of Polistes dominulus (Christ) females (Hymenoptera, Vespidae). Insectes Sociaux 35: 367381.CrossRefGoogle Scholar
Todd, F.E., and Reed, C.B.. 1970. Brood measurement as a valid index to the value of honey bees as pollinators. Journal of Economic Entomology 63: 148149.CrossRefGoogle Scholar
Topoff, H.R. 1985. Effect of overfeeding on raiding behavior in the western slave making ant Polyergus breviceps. National Geographic Research 1(3): 437441.Google Scholar
Tschinkel, W.R. 1988. Colony growth and the ontogeny of worker polymorphism in the fire ant, Solenopsis invicta. Behavioural Ecology and Sociobiology 22: 103115.CrossRefGoogle Scholar
Tschinkel, W.R., and Howard, D.F.. 1983. Colony founding by pleometrosis in the fire ant, Solenopsis invicta. Behavioural Ecology and Sociobiology 12: 103113.CrossRefGoogle Scholar
Vargo, E.L., and Fletcher, D.C.. 1987. Effect of queen number on the production of sexuals in natural populations of the fire ant, Solenopsis invicta. Physiological Entomology 12: 109116.CrossRefGoogle Scholar
Waddington, K.D., Allen, T., and Heinrich, B.. 1981. Floral preferences of bumblebees (Bombus edwardsii) in relation to intermittent versus continuous rewards. Animal Behaviour 29: 779785.CrossRefGoogle Scholar
Walker, J., and Stamps, J.. 1986. A test of optimal caste ratio theory using the ant Camponotus (Colobopsis) impressus. Ecology 67: 10521062.CrossRefGoogle Scholar
Wang, D.I., and Moeller, F.E.. 1970. The division of labor and queen attendance behavior of Nosema-infected worker honey bees. Journal of Economic Entomology 63: 15391541.CrossRefGoogle Scholar
Welham, C.V.J., and Ydenberg, R.C.. 1988. Net energy versus efficiency maximizing by foraging ring-billed gulls. Behavioural Ecology and Sociobiology 23: 7582.CrossRefGoogle Scholar
Werner, E.E., and Gilliam, J.F.. 1984. The ontogenetic niche and species interactions in size-structured populations. Annual Review of Ecology and Systematics 15: 393426.CrossRefGoogle Scholar
Werner, E.E., Gilliam, J.F., Hall, D.J., and Mittelbach, G.G.. 1983. An experimental test of the effects of predation risk on habitat use in fish. Ecology 64: 15401548.CrossRefGoogle Scholar
Wheeler, D.W., and Nijhout, H.F.. 1983. Soldier determination in Pheidole bicarinata: Effect of methoprene on caste and size within castes. Journal of Insect Physiology 21: 847854.CrossRefGoogle Scholar
Wheeler, D.W., and Nijhout, H.F.. 1984. Soldier determination in Pheidole bicarinata: Inhibition by adult soldiers. Journal of Insect Physiology 30: 127135.CrossRefGoogle Scholar
Wilson, E.O. 1971. The Insect Societies. Harvard, Cambridge, MA. 548 pp.Google Scholar
Wilson, E.O. 1980 a. Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta). I. The overall pattern in A. sexdens. Behavioural Ecology and Sociobiology 7: 143156.CrossRefGoogle Scholar
Wilson, E.O. 1980 b. Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta). II. The ergonomic optimization of leaf cutting. Behavioural Ecology and Sociobiology 7: 157165.CrossRefGoogle Scholar
Wilson, E.O. 1983 a. Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta). III. Ergonomic resiliency in foraging by A. cephalotes. Behavioural Ecology and Sociobiology 14: 4754.CrossRefGoogle Scholar
Wilson, E.O. 1983 b. Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta). IV. Colony ontogeny of A. cephalotes. Behavioural Ecology and Sociobiology 14: 5560.CrossRefGoogle Scholar
Wilson, E.O. 1984. The relation between caste ratios and division of labor in the ant genus Pheidole (Hymenoptera: Formicidae). Behavioural Ecology and Sociobiology 16: 8998.CrossRefGoogle Scholar
Wilson, E.O., and Eisner, T.. 1957. Quantitative studies of liquid food transmission in ants. Insectes Sociaux 4: 157166.CrossRefGoogle Scholar
Wilson, E.O., and Hölldobler, B.. 1988. Dense heterarchies and mass communication as the basis of organisation in ant colonies. Trends in Ecology and Evolution 3: 6568.CrossRefGoogle ScholarPubMed
Winston, M.L. 1979. Intra-colony demography and reproductive rate of the Africanized honeybee in South America. Behavioural Ecology and Sociobiology 4: 279292.CrossRefGoogle Scholar
Winston, M.L. 1980. Swarming, afterswarming, and reproductive rate of unmanaged honey bee colonies (Apis mellifera). Insectes Sociaux 27: 391398.CrossRefGoogle Scholar
Winston, M.L. 1987. The Biology of the Honey Bee. Harvard University Press, Cambridge, MA. 281 pp.Google Scholar
Winston, M.L., and Fergusson, L.A.. 1985. The effect of worker loss on temporal caste structure in colonies of the honeybee (Apis mellifera L.). Canadian Journal of Zoology 63: 777780.CrossRefGoogle Scholar
Winston, M.L., Higo, H.A., Colley, S.C., Pankiw, T., and Slessor, K.N.. 1991. The role of queen mandibular pheromone and colony congestion in honey bee (Apis mellifera L.) reproductive swarming. Journal of Insect Behavior 4: 649660.CrossRefGoogle Scholar
Winston, M.L., Higo, H.A., and Slessor, K.N.. 1990. Effect of various dosages of queen mandibular gland pheromones on the inhibition of queen rearing in the honey bee (Hymenoptera: Apidae). Annals of the Entomological Society of America 83: 234238.CrossRefGoogle Scholar
Winston, M.L., Mitchell, S.R., and Punnett, E.N.. 1985. Feasability of package honey bee (Hymenoptera: Apidae) production in Southwestern British Columbia, Canada. Journal of Economic Entomology 78: 10371041.CrossRefGoogle Scholar
Winston, M.L., Slessor, K.N., Willis, L.G., Naumann, K., Higo, H.A., Wyborn, M.H., and Kaminski, L.A.. 1989. The influence of queen mandibular pheromones on worker attraction to swarm clusters and inhibition of queen rearing in the honey bee (Apis mellifera L.). Insectes Sociaux 36: 1527.CrossRefGoogle Scholar
Wolf, T.J., and Schmid-Hempel, P.. 1989. Extra loads and foraging life-span in honeybee workers. Journal of Animal Ecology 58: 943954.CrossRefGoogle Scholar
Wolf, T.J., and Schmid-Hempel, P.. 1990. On the integration of individual foraging strategies with colony ergonomics in social insects: Nectar-collection in honeybees. Behavioural Ecology and Sociobiology 27: 103111.CrossRefGoogle Scholar
Wood, L.A., and Tschinkel, W.R., 1981. Quantification and modification of worker size variation in the fire ant Solenopsis invicta. Insectes Sociaux 28: 117128.CrossRefGoogle Scholar
Woyke, J. 1984. Correlations and interactions between populations, length of worker life and honey production by honeybees in a temperate region. Journal of Apicultural Research 23: 148156.CrossRefGoogle Scholar
Yamauchi, K., Kinomura, K., and Miyake, S.. 1982. Sociobiological studies of the polygynic ant Lasius sakagamii. II. Production of colony members. Insectes Sociaux 29: 164174.CrossRefGoogle Scholar