Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-30T23:19:51.037Z Has data issue: false hasContentIssue false

INVITATION PAPER (C.P. ALEXANDER FUND): ENDOCRINE REGULATION OF MALE ACCESSORY GLAND DEVELOPMENT AND ACTIVITY

Published online by Cambridge University Press:  31 May 2012

Cedric Gillott
Affiliation:
Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 0W0
Sarah B. Gaines
Affiliation:
Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 0W0

Abstract

For most species, the male accessory glands are mesodermal derivatives. Their form is as varied as are the functions of the secretion they produce. The post-embryonic development and differentiation of the glands, like those of other tissues, appear to be regulated by the interaction of juvenile hormone (JH) and ecdysteroid, the former inhibiting and the latter promoting these processes. Post-eclosion accessory gland activity (i.e. production of secretion), for most species examined, is regulated by JH. However, the precise mechanism of control and the site of action are not at all clear. A limited amount of in vitro work indicates a direct action of JH on the accessory glands though only for Drosophila melanogaster Meigen has a JH-receptor protein been identified. The JH promotes the synthesis of specific proteins in the accessory gland secretion, and two proposals have been made for the site and mode of action of the hormone. In the first it is suggested that the hormone affects membrane permeability, thereby influencing the supply of protein precursors; in the second a more direct action of JH at the gene level is proposed, namely, the promotion of translation.

The involvement of ecdysteroids in accessory gland activity is virtually unexplored though there have been a few demonstrations that these hormones can stimulate protein synthesis. An hypothesis worth further consideration suggests that ecdysteroids may have a role in those species that eclose in a sexually mature condition, i.e. where the accessory glands have both differentiated and produced their secretion in the pupal or pharate adult stage, presumably in the absence of JH.

Résumé

Dans la majorité des espèces, les glandes annexes mâles sont dérivées du mésoderme. Leur forme est aussi diverse que sont les fonctions des sécrétions qu’elles produisent. Le développement et la différenciation post-embryonnaire des glandes, comme ceux des autres tissus, semblent être déterminés par une action réciproque de l’hormone juvénile (JH) et l’ecdysteroide, le premier inhibant et le dernier activant ces processus. L’activité après éclosion des glandes annexes (c’est-à-dire, production de sécrétion) est sous le contrôle de JH dans la majorité des espèces examinées. Cependant, le mécanisme exact de contrôle et le site d’action de l’hormone sont en aucune manière évidents. Des études préliminaires in vitro montrent une action directe de JH sur les glandes annexes, bien qu’une protéine réceptrice de JH n’a été identifiée que pour Drosophila melanogaster Meigen. JH facilite la synthèse de protéines spécifiques à la sécrétion des glandes annexes, et deux propositions fûrent formulées. Pour la première, on suggère que l’hormone influence la perméabilité des membranes, et par conséquent, l’approvisionnement des précurseurs de protéines; dans la deuxième, une action plus directe pour JH au niveau génétique est formulée, c’est-à-dire un rehaussement de la codification génétique.

Le rôle des ecdysteroides sur l’activité des glandes annexes est presque inexploré, bien qu’il se peut que ces hormones peuvent stimuler la synthèse de protéines. Une hypothèse qui doit être considérée plus à fond touche le rôle des ecdysteroides pour les espèces qui éclosent dans un état de maturité sexuelle, c’est-à-dire, pour qui les glandes annexes se sont différenciées et ont produit des sécrétions aux stades de développement chrysalide ou adulte pharate, probablement en l’absence de JH.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avruch, L.I., and Tobe, S.S.. 1978. Juvenile hormone biosynthesis by the corpora allata of the male desert locust, Schistocerca gregaria, during sexual maturation. Canadian Journal of Zoology 56: 20972102.CrossRefGoogle Scholar
Baehr, J.C., Porcheron, P., Papillon, M., and Dray, F.. 1979. Haemolymph levels of juvenile hormone, ecdysteroids and proteins during the last two larval instars of Locusta migratoria. Journal of Insect Physiology 25: 415421.CrossRefGoogle Scholar
Bajaj, P., Ismail, S.M., and Dutta-Gupta, A.. 1990. Uptake of Corcyra haemolymph proteins by the male accessory reproductive glands of stem borer, Chilo partellus (Lepidoptera – Insecta). Biochemistry International 20: 549554.Google Scholar
Barker, J.F., and Davey, K.G.. 1981. Neuroendocrine regulation of protein accumulation by the transparent accessory reproductive gland of male Rhodnius prolixus. International Journal of Invertebrate Reproduction 3: 291296.CrossRefGoogle Scholar
Barker, J.F., and Davey, K.G.. 1983. A polypeptide from the brain and corpus cardiacum of male Rhodnius prolixus which stimulates in vitro protein synthesis in the transparent accessory reproductive gland. Insect Biochemistry 13: 710.CrossRefGoogle Scholar
Bar-Zev, A., and Kaulenas, M.S.. 1975. Nucleic acid metabolism in adult tissues of Gromphadorhina in response to ecdysterone: Quantitative effects. Journal of Insect Physiology 21: 623641.CrossRefGoogle ScholarPubMed
Beams, H.W., Anderson, E., and Kessel, R.. 1962. Electron microscope observations on the phallic (conglobate) gland of the cockroach, Periplaneta americana. Journal of the Royal Microscopical Society 81: 8589.CrossRefGoogle Scholar
Bidmon, H.J., and Sliter, T.J.. 1990. The ecdysteroid receptor. Invertebrate Reproduction and Development 18: 1327.CrossRefGoogle Scholar
Blaine, W.D., and Dixon, S.E.. 1973. The effect of juvenile hormone on the function of the accessory gland of the adult male cockroach Periplaneta americana (Orthoptera: Blattidae). The Canadian Entomologist 105: 12751280.CrossRefGoogle Scholar
Bollenbacher, W.E., Smith, S.L., Goodman, W., and Gilbert, L.I.. 1981. Ecdysteroid titre during larval–pupal–adult development of the tobacco hornworm, Manduca sexta. General and Comparative Endocrinology 44: 302306.CrossRefGoogle ScholarPubMed
Bressel, H.U., Shahab, N., and Romer, F.. 1990. Ecdysteroid secretion by several tissues in adult males of Gryllus bimaculatus. Invertebrate Reproduction and Development 18: 106107.Google Scholar
Cantacuzène, A.-M. 1967 a. Histologie des glandes annexes mâles de Schistocerca gregaria F. (Orthoptères). Effet de l'allatectomie sur leur structure et leur activité. Comptes Rendus. Academie des Sciences (Paris) 264: 9396.Google Scholar
Cantacuzène, A.-M. 1967 b. Effets comparés de l'allatectomie sur l'activité des glandes annexes mâles et le comportement sexuel de deux Acridiens: Schistocerca gregaria et Locusta migratoria (souches migratorioides et “Kazalinsk”). Comptes Rendus. Academie des Sciences (Paris) 265: 224227.Google Scholar
Cantacuzène, A.-M. 1968. Différenciation des caractères sexuels mâles de deux Acridiens, après implantation de corps allates pendant les derniers stades larvaires. Comptes Rendus. Academie des Sciences (Paris) 267: 749752.Google Scholar
Cantacuzène, A.-M., and Girardie, A.. 1970. Caractères sexuels des adultes prothétéliques mâles obtenus par allatectomie de Locusta migratoria migratorioides (Orthoptère). Comptes Rendus. Academie des Sciences (Paris) 270: 24652468.Google Scholar
Cheeseman, M.T., and Gillott, C.. 1988 a. Identification and partial characterization of the major secretory protein of the long hyaline gland in the male grasshopper, Melanoplus sanguinipes. Insect Biochemistry 18: 135144.CrossRefGoogle Scholar
Cheeseman, M.T., and Gillott, C.. 1988 b. Corpus allatum and corpus cardiacum regulation of long hyaline gland protein synthesis in the male grasshopper, Melanoplus sanguinipes. General and Comparative Endocrinology 72: 416423.CrossRefGoogle ScholarPubMed
Cheeseman, M.T., and Gillott, C.. 1990. Corpus allatum regulation of copulatory behaviour in the male grasshopper, Melanoplus sanguinipes. Physiological Entomology 15: 377383.CrossRefGoogle Scholar
Chen, P.S. 1984. The functional morphology and biochemistry of insect male accessory glands and their secretions. Annual Review of Entomology 29: 233255.CrossRefGoogle Scholar
Chen, P.S. 1991. Biochemistry and molecular regulation of the male accessory gland secretions in Drosophila (Diptera). Annales. Societé Entomologique de France (Nouvelle Série) 27: 231244.CrossRefGoogle Scholar
Couche, G.A., and Gillott, C.. 1987. Development of secretory activity in the long hyaline gland of the male migratory grasshopper, Melanoplus sanguinipes (Fabr.) (Orthoptera: Acrididae). International Journal of Insect Morphology and Embryology 16: 355367.CrossRefGoogle Scholar
Couche, G.A., and Gillott, C.. 1990. Structure of the accessory reproductive glands of the male migratory grasshopper, Melanoplus sanguinipes. Journal of Morphology 203: 219245.CrossRefGoogle ScholarPubMed
Dailey, P.J., and Happ, G.M.. 1983. Cytodifferentiation in the accessory glands of Tenebrio molitor. XI. Transitional cell types during establishment of pattern. Journal of Morphology 178: 139154.CrossRefGoogle ScholarPubMed
Dale, J.F., and Tobe, S.S.. 1986. Biosynthesis and titre of juvenile hormone during the first gonotrophic cycle in isolated and crowded Locusta migratoria females. Journal of Insect Physiology 32: 763769.CrossRefGoogle Scholar
Dapples, C.C., Foster, W.A., and Lea, A.O.. 1974. Ultrastructure of the accessory gland of the male mosquito, Aedes aegypti (L.) (Diptera: Culicidae). International Journal of Insect Morphology and Embryology 3: 279291.CrossRefGoogle Scholar
Davey, K.G. 1985. The male reproductive tract. pp. 1–14 in Kerkut, G.A., and Gilbert, L.I. (Eds.), Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 1. Pergamon Press, Oxford. 487 pp.Google Scholar
Day, M.F. 1943. The function of the corpus allatum in muscoid Diptera. Biological Bulletin (Woods Hole) 84: 127140.CrossRefGoogle Scholar
De Loof, A., and Lagasse, A.. 1972. The ultrastructure of the male accessory reproductive glands of the Colorado beetle. Zeitschrift fuer Zellforschung 130: 545552.CrossRefGoogle ScholarPubMed
Delbecque, J.-P., Him, M., Delachambre, J., and de Reggi, M.. 1978. Cuticular cycle and molting hormone levels during the metamorphosis of Tenebrio molitor (Insecta Coleoptera). Developmental Biology 64: 1130.CrossRefGoogle Scholar
Delbecque, J.-P., Weidner, K., and Hoffmann, K.H.. 1990. Alternative sites for ecdysteroid production in insects. Invertebrate Reproduction and Development 18: 2942.CrossRefGoogle Scholar
DiBenedetto, A.J., Harada, H.A., and Wolfner, M.F.. 1990. Structure, cell-specific expression and mating-induced regulation of a Drosophila melanogaster accessory gland gene. Developmental Biology 139: 134148.CrossRefGoogle ScholarPubMed
Dixon, S.E., and Blaine, W.D.. 1972. Hormonal control of male accessory gland development in the cockroach, Periplaneta americana (L.). Proceedings of the Entomological Society of Ontario 103: 97103.Google Scholar
Engelmann, F. 1970. The Physiology of Insect Reproduction. Pergamon Press, Oxford. 307 pp.Google Scholar
Friedel, T., and Gillott, C.. 1976 a. Male accessory gland substance of Melanoplus sanguinipes: An oviposition stimulant under the control of the corpus allatum. Journal of Insect Physiology 22: 489495.CrossRefGoogle Scholar
Friedel, T., and Gillott, C.. 1976 b. Extraglandular synthesis of accessory reproductive gland components in male Melanoplus sanguinipes. Journal of Insect Physiology 22: 13091314.CrossRefGoogle Scholar
Gallois, D. 1981. La différenciation fonctionnelle des glandes annexes mâles de Locusta migratoria migratorioides R. et F. Archives de Zoologie Expérimentale et Générale 122: 109116.Google Scholar
Gallois, D. 1989. Control of cell differentiation in the male accessory reproductive glands of Locusta migratoria: Acquisition and reversal of competence to imaginal secretion. Journal of Insect Physiology 35: 189195.CrossRefGoogle Scholar
Gee, J.D., Whitehead, D.L., and Koolman, J.. 1977. Steroids stimulate secretion by insect Malpighian tubules. Nature 269: 238239.CrossRefGoogle Scholar
Gillott, C. 1988. Arthropoda–Insecta. pp. 319–471 in Adiyodi, K.G., and Adiyodi, R.G. (Eds.), Reproductive Biology of Invertebrates, Vol. III (Accessory Sex Glands). Oxford and IBH, New Delhi. 518 pp.Google Scholar
Gillott, C., and Friedel, T.. 1976. Development of accessory reproductive glands and its control by the corpus allatum in adult male Melanoplus sanguinipes. Journal of Insect Physiology 22: 365372.CrossRefGoogle Scholar
Gillott, C., and Venkatesh, K.. 1985. Accumulation of secretory proteins in the accessory reproductive glands of the male migratory grasshopper, Melanoplus sanguinipes: A developmental study. Journal of Insect Physiology 31: 195204.CrossRefGoogle Scholar
Girardie, A., and Vogel, A.. 1966. Étude du contrôle neuro-humoral de l'activité sexuelle mâle de Locusta migratoria (L.). Comptes Rendus. Academie des Sciences (Paris) 263: 543546.Google Scholar
Gold, S.M.W., and Davey, K.G.. 1989. The effect of juvenile hormone on protein synthesis in the transparent accessory gland of male Rhodnius prolixus. Insect Biochemistry 19: 139143.CrossRefGoogle Scholar
Goodman, W.G., and Chang, E.S.. 1985. Juvenile hormone cellular and hemolymph binding proteins. pp. 491–510 in Kerkut, G.A., and Gilbert, L.I. (Eds.), Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 7. Pergamon Press, Oxford. 564 pp.Google Scholar
Grimes, M.J., and Happ, G.M.. 1980. Fine structure of the bean-shaped accessory gland in the male pupa of Tenebrio molitor L. (Coleoptera: Tenebrionidae). International Journal of Insect Morphology and Embryology 9: 281296.CrossRefGoogle Scholar
Grimnes, K.A., and Happ, G.M.. 1987. Ecdysteroids in vitro promote differentiation in the accessory glands of male mealworm beetles. Experientia 43: 906907.CrossRefGoogle ScholarPubMed
Happ, G.M. 1984. Structure and development of male accessory glands in insects. pp. 365–396 in King, R.C., and Akai, H. (Eds.), Insect Ultrastructure, Vol. 2. Plenum, New York. 624 pp.Google Scholar
Happ, G.M., and Happ, C.M.. 1982. Cytodifferentiation in the accessory glands of Tenebrio molitor. X. Ultrastructure of the tubular gland in the male pupa. Journal of Morphology 172: 97112.CrossRefGoogle ScholarPubMed
Happ, G.M., MacLeod, B.J., Szopa, T.M., Bricker, C.S., Lowell, T.C., Sankel, J.H., and Yuncker, C.. 1985. Cell cycles in the male accessory glands of mealworm pupae. Developmental Biology 107: 314324.CrossRefGoogle ScholarPubMed
Hartmann, R. 1971. Der Einfluss endokriner Faktoren auf die männlichen Akzessorischen Drüsen und die Ovarien bei der Keulenheuschrecke Gomphocerus rufus L. (Orthoptera, Acrididae). 1971. Zeitschrift fuer Vergleichende Physiologie 74: 190216.CrossRefGoogle Scholar
Hartmann, R., Wolf, W., and Loher, W.. 1972. The influence of the endocrine system on reproductive behavior and development in grasshoppers. General and Comparative Endocrinology, Supplement 3: 518528.CrossRefGoogle Scholar
Herman, W.S. 1975 a. Endocrine regulation of posteclosion enlargement of the male and female reproductive glands in monarch butterflies. General and Comparative Endocrinology 26: 534540.CrossRefGoogle ScholarPubMed
Herman, W.S. 1975 b. Juvenile hormone stimulation of tubular and accessory glands in male monarch butterflies. Comparative Biochemistry and Physiology 51A: 507510.CrossRefGoogle Scholar
Herman, W.S., and Barker, J.F.. 1976. Ecdysterone antagonism, mimicry, and synergism of juvenile hormone action on the monarch butterfly reproductive tract. Journal of Insect Physiology 22: 643648.CrossRefGoogle Scholar
Herman, W.S., and Bennett, D.C.. 1975. Regulation of oogenesis, female specific protein production, and male and female reproductive gland development by juvenile hormone in the butterfly, Nymphalis antiopa. Journal of Comparative Physiology 99: 331338.CrossRefGoogle Scholar
Herman, W.S., and Dallmann, S.H.. 1981. Endocrine biology of the painted lady butterfly Vanessa cardui. Journal of Insect Physiology 27: 163168.CrossRefGoogle Scholar
Herman, W.S., Lessman, C.A., and Johnson, G.D.. 1981. Correlation of juvenile hormone titer changes with reproductive tract development in the post eclosion monarch butterfly Danaus plexippus. Journal of Experimental Zoology 218: 387396.CrossRefGoogle Scholar
Hoffmann, K.H., and Behrens, W.. 1982. Free ecdysteroids in adult male crickets, Gryllus bimaculatus. Physiological Entomology 7: 269279.CrossRefGoogle Scholar
Huet, C. 1966. Étude expérimentale du développement de l'appareil génital mâle de Tenebrio molitor (Coléoptère: Ténébrionide). Comptes Rendus des Séances. Société de Biologie (Paris) 160: 20212025.Google Scholar
Ismail, P.M. 1991. Hormonal regulation of male accessory reproductive gland development in Lepidoptera (Insecta), with special reference to the origin of secretory proteins. Ph.D. thesis, University of Hyderabad, Hyderabad, India. 118 pp.Google Scholar
Ismail, P.M., and Dutta-Gupta, A.. 1990. Effect of 20-hydroxyecdysone and inhibitors on the protein synthesis in male accessory reproductive glands of Chilo partellus. Biochemical Archives 6: 321329.Google Scholar
Ismail, P.M., and Dutta-Gupta, A.. 1991. In vitro uptake of larval haemolymph proteins by male accessory reproductive glands of the stem borer, Chilo partellus. Invertebrate Reproduction and Development 20: 193199.CrossRefGoogle Scholar
Johansson, A.S. 1958. Relation of nutrition to endocrine-reproductive functions in the milkweed bug Oncopeltus fasciatus (Dallas) (Heteroptera: Lygaeidae). Nytt Magasin foer Zoology (Oslo) 7: 3141.Google Scholar
Johnson, C.G.D. 1979. The accessory reproductive glands of the male monarch butterfly, Danaus plexippus: Their development, fine structure and biochemistry. Ph.D. thesis, University of Minnesota, St. Paul. 162 pp.Google Scholar
Lessman, C.A., Herman, W.S., Schooley, D.A., Tsai, L.W., Bergot, B.J., and Baker, F.C.. 1989. Detection of juvenile hormone I, II and III in adult monarch butterflies (Danaus plexippus). Insect Biochemistry 19: 431433.CrossRefGoogle Scholar
Lessman, C.A., Rollins, L., and Herman, W.S.. 1982. Effects of juvenile hormones I, II, and III on reproductive tract growth in male and female monarch butterflies. Comparative Biochemistry and Physiology 71A: 141144.CrossRefGoogle Scholar
Loeb, M.J. 1991. Growth and development of spermducts of the tobacco budworm moth Heliothis virescens, in vivo and in vitro. Invertebrate Reproduction and Development 19: 97105.CrossRefGoogle Scholar
Loeb, M.J., and Hakim, R.S.. 1991. Development of genital imaginal discs of Heliothis virescens culture in vitro with 20-hydroxyecdysone and fat body or testis sheaths. Invertebrate Reproduction and Development 20: 181191.CrossRefGoogle Scholar
Loher, W. 1960. The chemical acceleration of the maturation process and its hormonal control in the male of the desert locust. Proceedings of the Royal Society of London, Series B 153: 380397.Google Scholar
Lum, P.T.M. 1961. The reproductive system of some Florida mosquitoes. I. The male reproductive tract. Annals of the Entomological Society of America 54: 397401.CrossRefGoogle Scholar
Monsma, S.A., Harada, H.A., and Wolfner, M.F.. 1990. Synthesis of two Drosophila male accessory gland proteins and their fate after transfer to the female during mating. Developmental Biology 142: 465475.CrossRefGoogle Scholar
Odhiambo, T.R. 1966 a. Growth and the hormonal control of sexual maturation in the male desert locust, Schistocerca gregaria (Forskål). Transactions of the Royal Entomological Society of London 118: 393412.CrossRefGoogle Scholar
Odhiambo, T.R. 1966 b. Site of action of the corpus allatum hormone at the cellular level in Schistocerca gregaria. Acta Tropica 23: 264271.Google ScholarPubMed
Ogiso, M., and Takahashi, S.Y.. 1984. Trehalases from the male accessory glands of the American cockroach: Developmental changes and the hormonal regulation of the enzymes. General and Comparative Endocrinology 55: 387392.CrossRefGoogle ScholarPubMed
Ramalingam, S., and Craig, G.B. Jr, 1977. The effects of a JH mimic and cauterization of the corpus allatum complex on the male accessory glands of Aedes aegypti (Diptera: Culicidae). The Canadian Entomologist 109: 897906.CrossRefGoogle Scholar
Ramalingam, S., and Craig, G.B. Jr, 1978. Fine structure of the male accessory glands in Aedes triseriatus. Journal of Insect Physiology 24: 251259.CrossRefGoogle Scholar
Riddiford, L.M. 1985. Hormone action at the cellular level. pp. 37–84 in Kerkut, G.A., and Gilbert, L.I. (Eds.), Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 8. Pergamon Press, Oxford. 595 pp.Google Scholar
Roth, L.M. 1967. Uricose glands in the accessory sex gland complex of male Blattaria. Annals of the Entomological Society of America 54: 12031211.CrossRefGoogle Scholar
Scharrer, B. 1946. The relationship between corpora allata and reproductive organs in adult Leucophaea maderae (Orthoptera). Endocrinology 38: 4655.CrossRefGoogle ScholarPubMed
Schmidt, T., Stumm-Zollinger, E., and Chen, P.S.. 1985. Protein metabolism of Drosophila melanogaster male accessory glands–III. Stimulation of protein synthesis following copulation. Insect Biochemistry 15: 391—401.CrossRefGoogle Scholar
Sehnal, F. 1985. Growth and life cycles. pp. 1–86 in Kerkut, G.A., and Gilbert, L.I. (Eds.), Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 2. Pergamon Press, Oxford. 505 pp.Google Scholar
Sevala, V.L., and Davey, K.G.. 1989. Action of juvenile hormone on the follicle cells of Rhodnius prolixus: Evidence for a novel regulatory mechanism involving protein kinase C. Experientia 45: 355356.CrossRefGoogle Scholar
Shemshedini, L., Lanoue, M., and Wilson, T.G.. 1990. Evidence for a juvenile hormone receptor involved in protein synthesis in Drosophila melanogaster. Journal of Biological Chemistry 265: 19131918.CrossRefGoogle ScholarPubMed
Shinbo, H., and Happ, G.M.. 1989. Effects of ecdysteroids on the growth of the post-testicular reproductive organs in the silkworm, Bombyx mori. Journal of Insect Physiology 35: 855864.CrossRefGoogle Scholar
Singh, T. 1978. The male accessory glands in Bruchidae (Coleoptera) and their taxonomic significance. Entomologica Scandinavica 9: 198203.CrossRefGoogle Scholar
Sridevi, R., Bajaj, P., and Dutta-Gupta, A.. 1988. Ecdysteroid stimulated protein synthesis in the male accessory reproductive glands of Spodoptera litura. Invertebrate Reproduction and Development 14: 177186.CrossRefGoogle Scholar
Sridevi, R., Bajaj, P., and Dutta-Gupta, A.. 1989. Hormonal regulation of macromolecular synthesis in testes and accessory reproductive glands of Spodoptera litura during post-embryonic and adult development. Indian Journal of Experimental Biology 27: 699703.Google ScholarPubMed
Steel, C.G.H., and Davey, K.G.. 1985. Integration in the insect endocrine system. pp. 1–34 in Kerkut, G.A., and Gilbert, L.I. (Eds.), Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 8. Pergamon Press, Oxford. 595 pp.Google Scholar
Szöllösi, A. 1975. Imaginal differentiation of the spermiduct in acridids: Effects of juvenile hormone. Acrida 4: 205216.Google Scholar
Szopa, T.M., Lenoir Rousseaux, J.-J., Yuncker, C., and Happ, G.M.. 1985. Ecdysteroids accelerate mitoses in accessory glands of beetle pupae. Developmental Biology 107: 325336.CrossRefGoogle ScholarPubMed
Tobe, S.S., Musters, A., and Stay, B.. 1979. Corpus allatum function during sexual maturation of male Diploptera punctata. Physiological Entomology 4: 7986.CrossRefGoogle Scholar
Venkatesh, K., and Gillott, C.. 1983. Protein production in components of the accessory gland complex of male Melanoplus sanguinipes (Insecta: Orthoptera). International Journal of Invertebrate Reproduction 6: 317325.CrossRefGoogle Scholar
Warren, J.T., and Gilbert, L.I.. 1986. Ecdysone metabolism and distribution during the pupal–adult development of Manduca sexta. Insect Biochemistry 16: 6582.CrossRefGoogle Scholar
Wigglesworth, V.B. 1936. The function of the corpus allatum in the growth and reproduction of Rhodnius prolixus (Hemiptera). Quarterly Journal of Microscopical Science 79: 91121.Google Scholar
Wigglesworth, V.B. 1985. Historical perspectives. pp. 1–24 in Kerkut, G.A., and Gilbert, L.I. (Eds.), Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 7. Pergamon Press, Oxford. 564 pp.Google Scholar
Wyatt, G.R. 1991. Gene regulation in insect reproduction. Invertebrate Reproduction and Development 20: 135.CrossRefGoogle Scholar
Yaginuma, T., and Happ, G.M.. 1989. 20-Hydroxyecdysone acts in the male pupa to commit accessory glands toward trehalase production in the adult mealworm beetle (Tenebrio molitor). General and Comparative Endocrinology 73: 173185.CrossRefGoogle ScholarPubMed
Yaginuma, T., Kai, H., and Happ, G.M.. 1988. 20-Hydroxyecdysone accelerates the flow of cells into the G1 phase and the S phase in a male accessory gland of the mealworm pupa (Tenebrio molitor). Developmental Biology 126: 173181.CrossRefGoogle Scholar
Yamamoto, K., Chadarevian, A., and Pellegrini, M.. 1988. Juvenile hormone action mediated in male accessory glands of Drosophila by calcium and kinase C. Science 239: 916919.CrossRefGoogle ScholarPubMed