Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T10:37:04.324Z Has data issue: false hasContentIssue false

INTRINSIC RATE OF INCREASE AND TEMPERATURE COEFFICIENTS OF THE APHID PARASITE EPHEDRUS CALIFORNICUS BAKER (HYMENOPTERA: APHIDIDAE)

Published online by Cambridge University Press:  31 May 2012

M.B. Cohen
Affiliation:
Centre for Pest Management, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
M. Mackauer
Affiliation:
Centre for Pest Management, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

Abstract

The demographic statistics and the temperature requirements for development of Ephedrus californicus Baker were determined under constant laboratory conditions. At 23 °C, females provided each day with forty 2nd-instar pea aphids, Acyrthosiphon pisum (Harris), lived for 13.4 days and laid 1193 eggs on average; the highest fecundity of any female was 1762 eggs. For an assumed population sex ratio of 1:1 males to females, the intrinsic rate of increase, r, was 0.371 females·female−1·day−1 when all eggs laid were counted. The lower temperature threshold for development, t, was estimated as 6.83 °C, and the time-to-adult, K, as 228.9 degree-days. The potential use of E. californicus in the biological control of the lupine aphid, Macrosiphum albifrons Essig, in England is considered.

Résumé

On a déterminé les statistiques démographiques et les besoins thermiques pour le développement chez Ephedrus californicus Baker, maintenu sous des conditions constantes de laboratoire. A 23 °C, des femelles ayant eu journalièrement accès à 40 larves de stade 2 du puceron du pois, Acyrthosiphon pisum, ont survécu pendant 13,4 jours et ont pondu 1193 oeufs, en moyenne; la fécondité maximale observée pour une femelle est de 1762 oeufs. Si on suppose que le rapport mâles:femelles est 1:1, le taux intrinsèque d’accroissement naturel est de 0,371 femelles femelle−1 jour−1 lorsque tous les oeufs pondus sont comptés. On a estimé le seuil thermique du développement t, à 6,83 °C, et la constante thermique du développement de l’adulte, K, à 228,9 degrés-jours. On discute de la possibilité d’utiliser E. californicus pour la lutte biologique contre le puceron Macrosiphum albifrons Essig en Angleterre.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrewartha, H.G., and Birch, L.C.. 1954. The distribution and abundance of animals. University of Chicago Press, Chicago and London. xv + 782 pp.Google Scholar
Campbell, A., Frazer, B.D., Gilbert, N., Gutierrez, A.P., and Mackauer, M.. 1974. Temperature requirements of some aphids and their parasites. J. appl. Ecol. 11: 431438.CrossRefGoogle Scholar
Carter, C.I., Fourt, D.F., and Barlett, P.W.. 1984. The lupin aphid's arrival and consequences. Antenna 8: 129132.Google Scholar
Chow, F.J., and Mackauer, M.. 1986. Host discrimination and larval competition in the aphid parasite Ephedrus californicus. Ent. exp. appl. 41: 243254.CrossRefGoogle Scholar
Clausen, C.P. (Ed.) 1978. Introduced parasites and predators of arthropod pests and weeds: a world review. U.S. Dep. Agric. Handbk. 480. Washington, DC. vi + 545 pp.Google Scholar
Cohen, M.B. 1985. Biology and ecology of Ephedrus californicus Baker (Hymenoptera: Aphidiidae). M.Sc. thesis, Simon Fraser University, Burnaby, BC. x + 105 pp.Google Scholar
Cohen, M.B., and Mackauer, M.. 1986. Lupine aphid, Macrosiphum albifrons (Homoptera: Aphididae): distribution and parasites in British Columbia. Environ. Ent. 15: 719722.CrossRefGoogle Scholar
Doutt, R.L., and DeBach, P.. 1964. Some biological control concepts and questions. pp. 118–142 in DeBach, P., (Ed.), Biological Control of Insect Pests and Weeds. Reinhold Publ. Corp., New York. xxiv + 844 pp.Google Scholar
Dureseau, L., Rivet, E., and Drea, J.J.. 1972. Ephedrus plagiator, a parasite of the greenbug in France. J. econ. Ent. 65: 604605.CrossRefGoogle Scholar
Finney, D.J. 1971. Probit analysis, 3rd ed. Cambridge University Press. xv + 333 pp.Google Scholar
Flanders, S.E. 1950. Regulation of ovulation and egg dispersal in the parasitic Hymenoptera. Can. Ent. 82: 134140.CrossRefGoogle Scholar
Force, D.C., and Messenger, P.S.. 1964. Fecundity, reproductive rates, and innate capacity for increase of three parasites of Therioaphis maculata (Buckton). Ecology 45: 706715.CrossRefGoogle Scholar
Frazer, B.D., and Gill, B.. 1981. Age, fecundity, weight, and the intrinsic rate of increase of the lupine aphid, Macrosiphum albifrons (Homoptera: Aphididae). Can. Ent. 113: 739745.CrossRefGoogle Scholar
Hagen, K.S., and van den Bosch, R.. 1968. Impact of pathogens, parasites, and predators on aphids. Annu. Rev. Ent. 13: 325384.CrossRefGoogle Scholar
Hofsvang, T., and Hagvar, E.B.. 1975. Developmental rate, longevity, fecundity and oviposition period of Ephedrus cerasicola Starý (Hym., Aphidiidae) parasitizing Myzus persicae Sulz. (Hom., Aphididae) on paprika. Norw. J. Ent. 22: 1522.Google Scholar
Hofsvang, T., and Hagvar, E.B.. 1978. Effect of parasitism by Ephedrus cerasicola Starý on Myzus persicae (Sulzer) in small glasshouses. Z. angew. Ent. 85: 115.CrossRefGoogle Scholar
Hofsvang, T., and Hagvar, E.B.. 1979. Different introduction methods of Ephedrus cerasicola Starý to control Myzus persicae (Sulzer) in small paprika glasshouses. Z. angew. Ent. 88: 1623.CrossRefGoogle Scholar
Huffaker, C.B., Messenger, P.S., and DeBach, P.. 1971. The natural enemy component in natural control and the theory of biological control. pp. 16–67 in Huffaker, C.B. (Ed.), Biological Control. Plenum Press, New York. xix + 511 pp.Google Scholar
Jackson, H.B., Rogers, C.E., Eikenbary, R.D., Starks, K.J., and McNew, R.W.. 1974. Biology of Ephedrus plagiator on different hosts and at various temperatures. Environ. Ent. 3: 618620.CrossRefGoogle Scholar
Liu, S.S., and Carver, M.. 1985. Studies on the biology of Aphidius sonchi Marshall (Hymenoptera: Aphidiidae), a parasite of the sowthistle aphid, Hyperomyzus lactucae (L.) (Hemiptera: Aphididae). Bull. ent. Res. 75: 199208.Google Scholar
Mackauer, M. 1983. Quantitative assessment of Aphidius smithi (Hymenoptera: Aphidiidae): fecundity, intrinsic rate of increase, and functional response. Can. Ent. 115: 399415.CrossRefGoogle Scholar
Mackauer, M., and Bisdee, H.E.. 1965. Two simple devices for rearing aphids. J. econ. Ent. 58: 365366.CrossRefGoogle Scholar
Mackauer, M., and Starý, P.. 1967. World Aphidiidae (Hym. Ichneumonoidea). Le François, Paris. 195 pp.Google Scholar
Murdoch, W.W., Chesson, J., and Chesson, P.L.. 1985. Biological control in theory and practice. Am. Nat. 125: 344366.CrossRefGoogle Scholar
Shirota, Y., Carter, N., Rabbinge, R., and Ankersmit, G.W.. 1983. Biology of Aphidius rhopalosiphi, a parasitoid of cereal aphids. Ent. exp. appl. 34: 2734.CrossRefGoogle Scholar
Sokal, R.R., and Rohlf, F.J.. 1981. Biometry, 2nd ed. W.H. Freeman, San Francisco. xviii + 859 pp.Google Scholar
Sorokina, A.P. 1970. Structure and development of the reproductive organs and potential fecundity in the female of some aphid parasites (Hymenoptera, Aphidiidae). Ent. Rev., Wash. 49: 2731.Google Scholar
Starý, P. 1962. Bionomics and ecology of Ephedrus pulchellus Stelfox, an important parasite of leaf-curling aphids in Czechoslovakia, with notes on diapause (Hym.: Aphidiidae). Entomophaga 7: 91100.CrossRefGoogle Scholar
Withington, C.H. 1909. Habits of parasitic Hymenoptera, II. Trans. Kans. Acad. Sci. 22: 314322.CrossRefGoogle Scholar