Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-04T22:53:34.405Z Has data issue: false hasContentIssue false

INTRA-NEST TRANSMISSION OF AROMATIC HONEY BEE QUEEN MANDIBULAR GLAND PHEROMONE COMPONENTS: MOVEMENT AS A UNIT

Published online by Cambridge University Press:  31 May 2012

Ken Naumann
Affiliation:
Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
Mark L. Winston
Affiliation:
Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
Keith N. Slessor
Affiliation:
Department of Chemistry and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
Glenn D. Prestwich
Affiliation:
Department of Chemistry, State University of New York, Stony Brook, New York, USA11794
Bachir Latli
Affiliation:
Pesticide Chemistry and Toxicology Laboratory, 201 Wellman Hall, Department of Entomological Sciences, University of California, Berkeley, California, USA94720

Abstract

The intra-nest transmission of two aromatic components of honey bee queen mandibular gland pheromone, 4-hydroxy-3-hydroxyphenylethanol (HVA) and methyl p-hydroxybenzoate (HOB), is quantitatively described. After being secreted onto the body surface of the queen, the greatest quantities of HVA and HOB are removed by workers in the queen’s retinue, especially those contacting the queen with their mouthparts. Other workers acquire pheromone components via direct contact with retinue bees or with other workers that have already acquired queen pheromone. HVA and HOB can also reach workers through queen or worker "footprints," although the relatively little material deposited onto the comb wax becomes less available with time, presumably because of diffusion into the wax. Pheromone material is removed from circulation by being internalized into workers, the queen, and the wax. Rates of HVA and HOB transfer between different entities within the nest are described in terms of pseudo first-order rate constants. The intra-nest transfer of these two components, both qualitatively and quantitatively, is similar to that described earlier for the most abundant queen mandibular gland pheromone component, 9-keto-2-(E)-decenoic acid (9-ODA; Naumann et al. 1991). Thus, the queen mandibular gland pheromone complex is transferred through the nest as a unit rather than as individual components moving at different rates.

Résumé

La transmission dans le nid de deux composantes aromatiques de la phéromone de la glande mandibulaire chez les reines de l’Abeille domestique, le 4-hydroxy-3-hydroxy-phényléthanol (HVA) et le p-hydroxybenzoate de méthyle (HOB), a été quantifiée. La substance est dabord sécrétée à la surface du corps de la reine; les quantités les plus importantes d’HVA et d’HOB sont prélevées par les ouvrières de la suite de la reine, particulièrement par celles dont les pièces buccales viennent en contact avec la reine. Les autres ouvrières acquièrent les composantes de la phéromone par contact direct avec les abeilles de la suite royale ou avec d’autres ouvrières qui ont déjà acquis la phéromone. Les substances peuvent également parvenir aux ouvrières via les "empreintes" laissées par la reine ou par les ouvrières, bien que la très petite quantité de substance contenue dans la cire des rayons devienne de moins en moins disponible, probablement à cause de sa diffusion dans la cire. Les composantes de la phéromone finissent par ne plus être en circulation parce qu’elles sont absorbées par les ouvrières, la reine et la cire. Les vitesses de transmission de l’HVA et de l’HOB d’un élément à l’autre dans le nid sont décrites ici sous forme de pseudo-constantes de premier ordre. La transmission dans le nid de ces deux composantes est semblable qualitativement et quantitativement au mode de transmission observé antérieurement dans le cas de la composante la plus abondante de la phéromone de la glande mandibulaire de la reine, l’acide 9-céto-2(E)-décénoïque (9-ODA; Naumann et al. 1991). Tout le complexe des composantes de la phéromone de la glande mandibulaire de la reine est donc transmis intégralement dans un même temps et les divers éléments du complexe circulent donc tous ensemble à la même vitesse.

[Traduit par la rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boch, R., and Lensky, Y.. 1976. Pheromonal control of queen rearing in honeybee colonies. Journal of Apicultural Research 15: 5962.CrossRefGoogle Scholar
Butler, C.G. 1954. The method and importance of the recognition by a colony of honey bees (A. mellifera) of the presence of its queen. Transactions of the Royal Entomological Society of London 105: 1129.CrossRefGoogle Scholar
Butler, C.G. 1960. Queen substance production by virgin queen honey-bees (Apis mellifera L.). Proceedings of the Royal Entomological Society of London (A) 35: 170171.CrossRefGoogle Scholar
Butler, C.G., and Fairey, E.M.. 1964. Pheromones of the honey bee: Biological studies of the mandibular gland secretion of the queen. Journal of Apicultural Research 3: 6576.CrossRefGoogle Scholar
Butler, C.G., and Simpson, J.. 1958. The source of queen substance of the honeybee (Apis mellifera). Proceedings of the Royal Entomological Society of London (A) 33: 120122.CrossRefGoogle Scholar
Currie, R.W., Winston, M.L., and Slessor, K.N.. 1992. Impact of synthetic queen mandibular gland pheromone on honey bee (Apis mellifera L. Hymenoptera, Apidae) pollination of berry crops. Journal of Economic Entomology. In press.Google Scholar
Crewe, R.M. 1988. Natural history of honey-bee mandibular gland secretions: Development of analytical techniques and the emergence of complexity. pp. 149–158 in Needham, G.R., Page, R.E., Delfinado-Baker, M., and Bowner, C.E. (Eds.), Africanized Honey Bees and Bee Mites. Ellis Horwood, Chichester.Google Scholar
Fergusson, A.W., and Free, J.B.. 1980. Queen pheromone transfer within honeybee colonies. Physiological Entomology 5: 356366.CrossRefGoogle Scholar
Free, J.B. 1987. Pheromones of Social Bees. Chapman and Hall Ltd., London. 187 pp.Google Scholar
Free, J.B., and Williams, I.H.. 1974. Factors determining food storage and brood rearing in the honeybee (Apis mellifera) comb. Journal of Entomology (A) 49: 4763.Google Scholar
Gary, N.E. 1961. Queen honey bee attractiveness as related to mandibular gland secretions. Science 133: 14791480.CrossRefGoogle Scholar
Higo, H.A., Colley, S.J., Winston, M.L., and Slessor, K.N.. 1992. Effects of honey bee (Apis mellifera L.) queen mandibular gland pheromone on foraging and brood rearing. The Canadian Entomologist 124: 409418.CrossRefGoogle Scholar
Hölldobler, B., and Carlin, N.F.. 1987. Anonymity and specificity in the chemical communication signals of social insects. Journal of Comparative Physiology A 161: 567581.CrossRefGoogle Scholar
Kaminski, L.-A., Slessor, K.N., Winston, M.L., Hay, N., and Borden, J.H.. 1990. Honey bee responses to queen mandibular pheromone in laboratory bioassays. Journal of Chemical Ecology 16: 841850.CrossRefGoogle Scholar
Linn, C.E. Jr, and Roelofs, W.E.. 1989. Response specificity of male moths to multicomponent pheromones. Chemical Senses 14: 421437.CrossRefGoogle Scholar
Naumann, K. 1991. Grooming behaviors and the translocation of queen mandibular gland pheromone on worker honey bees. Apidologie 22: 527535.CrossRefGoogle Scholar
Naumann, K., Winston, M.L., Slessor, K.N., Prestwich, G.D., and Webster, F.X.. 1991. The production and transmission of honey bee (Apis mellifera L.) queen mandibular gland pheromone. Behavioural Ecology and Sociobiology 29: 321332.CrossRefGoogle Scholar
Naumann, K., Winston, M.L., Wyborn, M.H., and Slessor, K.N.. 1990. Effects of synthetic, honey bee (Hymenoptera: Apidae) queen mandibular-gland pheromone on workers in packages. Journal of Economic Entomology 83: 12711275.CrossRefGoogle Scholar
Seeley, T.D. 1979. Queen substance dispersal by messenger workers in honeybee colonies. Behavioural Ecology and Sociobiology 5: 391415.CrossRefGoogle Scholar
Silverstein, R.M., and Young, J.C.. 1976. Insects generally use multi-component pheromones. pp. 1–29 in Gould, R.F. (Ed.), Pest Management with Sex Attractants. American Chemical Society, Washington, DC.Google Scholar
Slessor, K.N., Kaminski, L.-A., King, G.G.S., Borden, J.H., and Winston, M.L.. 1988. Semiochemical basis of the retinue response to queen honey bees. Nature 332: 354356.CrossRefGoogle Scholar
Slessor, K.N., Kaminski, L.-A., King, G.G.S., and Winston, M.L.. 1990. Semiochemicals of the honeybee queen mandibular glands. Journal of Chemical Ecology 16: 851860.CrossRefGoogle ScholarPubMed
Velthuis, H.H.W. 1972. Observations on the transmission of queen substances in the honey bee colony by attendants of the queen. Behaviour 41: 105129.CrossRefGoogle Scholar
Velthuis, H.H.W. 1990. Chemical signals and dominance communication in the honey bee Apis mellifera [Hymenoptera: Apidae]. Entomologia Generalis 15: 8390.CrossRefGoogle Scholar
Willis, L.G., Winston, M.L., and Slessor, K.N.. 1990. Queen honey bee mandibular gland pheromone does not affect worker ovary development. The Canadian Entomologist 122: 10931099.CrossRefGoogle Scholar
Winston, M.L., Higo, H.A., Colley, S., and Slessor, K.N.. 1991. The role of queen mandibular pheromone and colony congestion in honey bee (Apis mellifera L.) reproductive swarming. Journal of Insect Behavior 4: 649659.CrossRefGoogle Scholar
Winston, M.L., Higo, H.A., and Slessor, K.N.. 1990. Effect of various dosages of queen mandibular gland pheromone on the inhibition of queen rearing in the honey bee (Hymenoptera: Apidae). Annals of the Entomological Society of America 83: 234238.CrossRefGoogle Scholar
Winston, M.L., Slessor, K.N., Willis, L.G., Naumann, K., Higo, H.A., Wyborn, M.H., and Kaminski, L.-A.. 1989. The influence of queen mandibular pheromones on worker attraction to swarm clusters and inhbition of queen rearing in the honey bee (Apis mellifera L.). Insectes Sociaux 36: 1527.CrossRefGoogle Scholar
Zar, J.H. 1984. Biostatistical Analysis. Prentice-Hall Inc., Englewood Cliffs, NJ. 718 pp.Google Scholar
Zmarlicki, C., and Morse, R.A.. 1964. The effect of mandibular gland extirpation on the longevity and attractiveness to workers of queen honey bees, Apis mellifera. Annals of the Entomological Society of America 57: 7374.CrossRefGoogle Scholar