Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T12:47:47.752Z Has data issue: false hasContentIssue false

INTERPOPULATION DIFFERENCES IN THE COLDHARDINESS OF DELIA RADICUM (DIPTERA: ANTHOMYIIDAE)1

Published online by Cambridge University Press:  31 May 2012

W.J. Turnock*
Affiliation:
Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
G. Boivin
Affiliation:
Agriculture and Agri-Food Canada, 430 Boulevard Gouin, St-Jean-sur-Richelieu, Quebec, Canada J3B 3E6
R.A. Ring
Affiliation:
Department of Biology, University of Victoria, Victoria, British Columbia, Canada V8W 2Y2
*
2Author to whom all correspondence should be addressed.

Abstract

The cabbage root maggot, Delia radicum (L.), was introduced to North America in the mid-1800s, likely from northwestern Europe, and probably reached Quebec and British Columbia before 1885 and Manitoba by 1922. The mean temperature of crystallization (Tc) for overwintering pupae was −22.8 ± 1.2 °C for the St-Jean-sur-Richelieu, Quebec, population and −23.8 ± 0.7 °C for the Vancouver, British Columbia, population. The mean Tc for these two populations and for Winnipeg, Manitoba (−24.4 °C), Ascot, England (−22.8 °C), Tallinn, Estonia (−25.2 °C), and St. Petersburg, Russia (ca. −20 °C), did not show any relation to mean January temperatures. These locations represent both temperate oceanic and temperate continental climates and a range of mean January temperatures from +4.6 to −17.7 °C. Survival of puparia from St-Jean-sur-Richelieu exposed to nonfreezing temperatures decreased as temperature decreased and exposure time lengthened. The parameters for the regression equations describing this relationship were similar to those describing the Winnipeg population, and both were more coldhardy than the Ascot population. The upper limit of the cold injury zone (ULCIZ) for the St-Jean-sur-Richelieu population was −12.7 °C and the lower limit of this zone (LLCIZ) was −27.6 °C. Coldhardy populations from temperate continental climates (St-Jean-sur-Richelieu, Winnipeg) showed a rate of decrease in survival with increased cold stress (lower temperature, longer exposure) within the cold injury zone which was much slower than in the less coldhardy population (Ascot). Thus, some individuals from the coldhardy populations would be physiologically capable of surviving exposure to temperatures below Tc, whereas in the Ascot population nonfreezing injury would kill all the overwintering puparia at a temperature (−19.6 °C) well above Tc (−22.8 °C). The observed survival of puparia from Vancouver, following various nonfreezing exposures, resembled more closely the calculated survival for these exposures when the equations describing the Ascot population were used than when the equations for Winnipeg or St-Jean-sur-Richelieu were used. The Ascot and Vancouver populations, both from temperate oceanic climates, are less coldhardy than the populations from St-Jean-sur-Richelieu and Winnipeg (temperate continental climates). The founder populations of D. radicum in North America, which probably originated in the temperate oceanic climates of northwestern Europe, have adapted to the colder temperate continental climates by increasing their ability to survive longer exposures to all temperatures within the cold injury zone and not by lowering Tc. Therefore, selection for coldhardiness in D. radicum must have operated on structures, processes, or physiological-biochemical mechanisms that help the organism to avoid or repair nonfreezing cold injury but not on those that determine Tc.

Résumé

La Mouche du chou, Delia radicum (L.) a été introduite en Amérique du Nord au milieu du siècle dernier, vraisemblablement du nord-ouest de l’Europe, et a probablement colonisé le Québe et la Colombie-Britannique avant 1885 et avait déjà atteint le Manitoba en 1922. La température moyenne de cristallisation (Tc) des pupes en hiver a été évaluée à −22,8 ± 1,2 °C chez la population de St-Jean-sur-Richelieu, Québec, et à −23,8 ± 0,7 °C chez celle de Vancouver, Colombie-Britannique. Les températures Tc de ces deux populations et de celles de Winnipeg, Manitoba (−24,4 °C), d’Ascot, Angleterre (−22,8 °C), de Tallinn, Estonie (−25 °C) et de St-Petersbourg, Russie (ca −20 °C) n’étaient pas en corrélation avec les températures moyennes enregistrées en janvier. Les endroits mentionnés représentent des climats océanique tempéré et continental tempéré et l’étendue des températures moyennes en janvier s’y situe entre +4,6 et −17,7 °C. La survie des pupariums chez les anthomyiies de St-Jean exposées à des températures supérieures au point de congélation était fonction de la température et fonction inverse de la durée de l’exposition. Les paramètres des équations de régression représentant cette relation se sont avérés semblables à ceux qui décrivent la population de Winnipeg et les deux populations sont plus résistantes au froid que celle d’Ascot. La limite supérieure de la zone de dommages au froid (ULCIZ) chez la population de St-Jean a été estimée à −12,7 °C, et la limite inférieure (LLCIZ), à −27,6 °C. Chez les populations résistantes au froid des climats continentaux tempérés (St-Jean, Winnipeg), la diminution de la survie à la suite d’une augmentation du stress thermique dû au froid (température plus basse, exposition de plus longue durée) dans les limites de la zone des dommages au froid est beaucoup plus lente qu’elle ne l’est chez la population moins résistante (Ascot). Certains individus des populations résistantes semblent donc physiologiquement capables de survivre à des températures inférieures au point Tc, alors que, chez la population d’Ascot, des dommages non attribuables au gel pourraient tuer tous les pupariums à une température (−19,6 °C) bien supérieure à la température Tc (−22,8 °C). La survie observée chez les pupariums de Vancouver, après exposition à diverses températures supérieures au point de congélation, se rapproche plus de la survie calculée d’après l’équation de la population d’Ascot que de la survie calculée d’après les équations des populations de Winnipeg ou de St-Jean. Les populations d’Ascot et de Vancouver, toutes deux soumises à des climats océaniques tempérés, sont moins résistantes au froid que les populations de St-Jean ou de Winnipeg (climats continentaux tempérés). Les populations fondatrices de D. radicum en Amérique du Nord, probablement originaires de la zone climatique océanique tempérée du nord-ouest de l’Europe, se sont adaptées à des climats continentaux tempérés plus froids par augmentation de leur capacité de survie à des expositions plus longues à toutes les températures situées dans les limites de la zone des dommages au froid plutôt que par abaissement de leur température Tc. Il semble donc que la sélection qui a favorisé la résistance au froid chez D. radicum ait agi sur les structures, les processus et les mécanismes physiologiques/biochimiques qui permettent à l’organisme d’éviter les blessures causées par le froid ou d’y remédier, plutôt que sur ceux qui déterminent la température de cristallisation.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Contribution No. 1669 of the Cereal Research Centre, Winnipeg.

References

Ashton, W.E. 1972. The Logit Transformation. Hafner Publishing Company, Inc., NY.Google Scholar
Atmospheric Environment Service. 19811990. Daily Soil Temperature Data. Atmospheric Environment Service, Environment Canada, Downsview, Ont.Google Scholar
Bale, J.S. 1987. Insect coldhardiness: an ecological perspective. Journal of Insect Physiology 33: 899908.CrossRefGoogle Scholar
Block, W., Turnock, W.J., and Jones, T.H.. 1987. Cold resistance and overwintering survival of the cabbage root fly Delia radicum (Anthomyiidae) and its parasitoid, Trybliographa rapae (Cynipidae). Oecologia (Berlin) 71: 332338.CrossRefGoogle ScholarPubMed
Bryson, R.A., and Hare, F.K. (Eds.). 1974. Climates of North America. World Survey of Climatology, Vol. 11. Elsevier, Amsterdam.Google Scholar
CAB. 1989. Distribution Maps of Pests. Delia radicum (Linnaeus). Map No. 83 (revised). CAB International Institute of Entomology, London, UK.Google Scholar
Fletcher, J. 1886. Report of the Entomologist (for 1885). Dominion of Canada, Department of Agriculture, Ottawa.Google Scholar
Griffiths, G.C.D. 1991. Anthomyiidae. Flies of the Nearctic Region. Vol. VIII, Pt. 2. E. Schweizerbart'sche Verlagbuchhandlung, Stuttgart.Google Scholar
Hazel, J.R. 1989. Cold adaptations in ectotherms, regulation of membrane function and cellular metabolism. Advances in Comparative and Environmental Physiology 4: 150.CrossRefGoogle Scholar
Kostal, V. 1993. coldhardiness and supercooling points in diapausing and non-diapausing stages of the cabbage root fly Delia radicum. Cryobiology 30: 524531.CrossRefGoogle Scholar
Lamb, R.J., Turnock, W.J., and Hayhoe, H.N.. 1985. Winter survival and outbreaks of the bertha armyworm, Mamestra configurata (Lepidoptera: Noctuidae), on canola. The Canadian Entomologist 117: 727736.CrossRefGoogle Scholar
Lee, R.E. 1991. Principles of insect low temperature tolerance. pp. 1747in Lee, R.E., and Denlinger, D.L. (Eds.), Insects at Low Temperatures. Chapman and Hall, New York.CrossRefGoogle Scholar
Lozina-Lozinskii, L.K. 1974. Studies in Cryobiology. John Wiley & Sons, Inc., New York.Google Scholar
Merivee, E. 1978. coldhardiness in Insects. Academy of Sciences of the Estonian SSR, Tallinn. (In Estonian with English summary.)Google Scholar
Pullin, A.S., and Bale, J.S.. 1989. Effects of low temperature on diapausing Aglais urticae and Inachis io (Lepidoptera: Nymphalidae): coldhardiness and overwintering survival. Journal of Insect Physiology 35: 277281.CrossRefGoogle Scholar
SAS Institute Inc. 1990. SAS Users Guide, Statistics. SAS Institute Inc. Cary, NC.Google Scholar
Sokal, R.F., and Rohlf, F.J.. 1981. Biometry. 2nd ed. W.H. Freeman and Co., San Francisco.Google Scholar
Storey, K.B. 1984. A metabolic approach to coldhardiness in animals. Cryo-Letters 5: 147161.Google Scholar
Storey, K.B., and Storey, J.M.. 1989. Freeze tolerance and freeze avoidance in ectotherms. Advances in Comparative and Environmental Physiology 4: 5282.Google Scholar
Trewartha, G.T., and Horn, L.H.. 1980. An Introduction to Climate. 5th ed. McGraw-Hill Book Co., New York.Google Scholar
Turnock, W.J. 1990. Coldhardiness of Lacanobia atlantica (Lepidoptera: Noctuidae), and a comparison with these other insect species overwintering in the same habitat. Canadian Journal of Zoology 71: 17101714.CrossRefGoogle Scholar
Turnock, W.J., and Bodnaryk, R.P.. 1991. Latent cold injury and its conditional expression in the bertha armyworm, Mamestra configurata (Noctuidae: Lepidoptera). Cryo-Letters 12: 377384.Google Scholar
Turnock, W.J., and Bodnaryk, R.P.. 1993. The reversal of cold injury and its effect on the response to subsequent cold exposures. Cryo-Letters 14: 751756.Google Scholar
Turnock, W.J., and Bracken, G.K.. 1989. Effects of low non-freezing temperatures on pupae of two species of diapausing, freeze-intolerant insects. Cryo-Letters 10: 189196.Google Scholar
Turnock, W.J., Lamb, R.J., and Bodnaryk, R.P.. 1983. Effects of cold stress during diapause on the survival and development of Mamestra configurata (Lepidoptera: Noctuidae). Oecologia (Berlin) 56: 185192.CrossRefGoogle ScholarPubMed
Turnock, W.J., Jones, T.H., and Reader, P.M.. 1985. Effects of cold stress during diapause on the survival and development of Delia radicum (Diptera: Anthomyiidae) in England. Oecologia (Berlin) 67: 506510.CrossRefGoogle Scholar
Turnock, W.J., Reader, P.M., and Bracken, G.K.. 1990. A comparison of the coldhardiness of populations of Delia radicum (L.) (Diptera: Anthomyiidae) from southern England and the Canadian Prairies. Canadian Journal of Zoology 68: 830835.CrossRefGoogle Scholar
Turnock, W.J., Boivin, G., and Whistlecraft, D.W.. 1995. Parasitism of overwintering puparia of the cabbage root maggot, Delia radicum (L.) (Diptera: Anthomyiidae) in relation to host density and weather factors. The Canadian Entomologist 127: 535542.CrossRefGoogle Scholar
U.S. Navy. 1992. International Station Meteorological Climate Summary. Version 2.0. U.S. Navy Oceanographic Command Detachment, Nashville, TN.Google Scholar
Wilson, T. 1913. Report from the Vancouver District. p. 8in Proceedings of the Entomological Society of British Columbia for 1912.Google Scholar