Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T16:27:38.585Z Has data issue: false hasContentIssue false

Insect predators in northeast China and their impacts on Aphis glycines

Published online by Cambridge University Press:  19 November 2012

Jian Liu
Affiliation:
Northeast Forestry University Postdoctoral Programme, Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, 369 Xuefu Road, Harbin 150086, China; and College of Agriculture, Northeast Agricultural University, 59 Mucai St., Harbin 150030, China
Weijun Xu
Affiliation:
Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, 369 Xuefu Road, Harbin 150086, China
Qiuyu Wang
Affiliation:
College of Life Sciences, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
Kuijun Zhao*
Affiliation:
College of Agriculture, Northeast Agricultural University, 59 Mucai St., Harbin 150030, China
*
1Corresponding author (e-mail: [email protected]).

Abstract

Predators of Aphis glycines Matsumura (Hemiptera: Aphididae) were surveyed and their ability to suppress A. glycines population growth was determined in Harbin, northeast China (45.4°N, 126.4°E). Field surveys were conducted on 21 fixed sampling sites in 2004 and 17 in 2005. Impacts of natural enemies of A. glycines were studied using exclosure experiments. Thirteen natural enemies were found, the most abundant of which was Propylaea japonica (Thunberg), Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), Chrysopa sinica Tjeder, Chrysopa phyllochroma Wesmael, Chrysopa formosa Brauer (Neuroptera: Chrysopidae), Hemerobius humuli Linnaeus (Neuroptera: Hemerobiidae), Orius Wolff sp. (Heteroptera: Anthocoridae), Nabis stenoferus Hsiao (Heteroptera: Reduviidae), Deraeocoris punctulatus (Fallén) (Heteroptera: Miridae), and Episyrphus balteata (De Geer) (Diptera: Syrphidae). Three exclosure treatment types were established, large-mesh cages, small-mesh cages, and no cages. In exclosures, A. glycines density in small-mesh cages peaked at numbers 3.75-fold higher than in large-mesh cages and 17.44-fold higher than on plants with no cages in 2004. In 2005, these numbers were 4.59-fold and 60.98-fold. Temperature was not a factor in exclosures, but relative humidity had significant effects. These results indicated that existing predator communities could partially suppress soybean aphid population density in soybean fields in northeast China.

Résumé

Nous avons fait l'inventaire des prédateurs d’Aphis glycines Matsumura (Hemiptera: Aphididae) et évalué leur capacité à réduire la croissance des populations d’A. glycines à Harbin dans le nord-est de la Chine (45,4°N, 126,4°E). Les inventaires de terrain ont été menés dans 21 sites d’échantillonnage fixes en 2004 et dans 17 sites en 2005. Nous avons déterminé les impacts des ennemis naturels d’A. glycines dans des essais en exclos. Nous avons répertorié treize ennemis naturels dont les plus abondants sont Propylaea japonica (Thunberg), Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), Chrysopa sinica Tjeder, Chrysopa phyllochroma Wesmael, Chrysopa formosa Brauer (Neuroptera: Chrysopidae), Hemerobius humuli Linnaeus (Neuroptera: Hemerobiidae), Orius Wolff sp. (Heteroptera: Anthocoridae), Nabis stenoferus Hsiao (Heteroptera: Reduviidae), Deraeocoris punctulatus (Fallén) (Heteroptera: Miridae) et Episyrphus balteata (De Geer) (Diptera: Syrphidae). Trois types d'essais en exclos ont été réalisés, avec des cages à larges mailles, avec des cages à mailles fines et sans cages. Dans les exclos, la densité d’A. glycines dans les cages à mailles fines a atteint un maximum 3,75 fois plus élevé que dans les cages à mailles larges et 17,44 fois plus élevé que sur les plantes sans cages en 2004. En 2005, les valeurs respectives étaient de 4,59 et 60,98 fois. La température n'est pas un facteur dans les exclos, mais l'humidité relative produit des effets significatifs. Ces résultats indiquent que les communautés existantes de prédateurs peuvent en partie réduire la densité des populations de pucerons du soja dans les cultures de soja dans le nord-est de la Chine.

Type
Original Article
Copyright
Copyright © Entomological Society of Canada 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Burrows, M.E.L., Boerboom, C.M., Gaska, J.M., Grau, C.R. 2005. The relationship between Aphis glycines and soybean mosaic virus incidence in different pest management systems. Plant Disease, 89: 926934.CrossRefGoogle ScholarPubMed
Chen, Q.H.Yu, S.Y. 1988. Aphid and its control. Shanghai Science and Technique Press, Shanghai, China, pp. 206210 (Chinese).Google Scholar
Chen, Y.N., Wen, L.Z., Pan, T. 1992. Influence of temperature and relative humidity on growth, development, reduction and survival of Myzus persicae (Sulzer). Chinese Tobacco Science, 14: 1823 (Chinese).Google Scholar
Cheng, D.F., Tian, Z., Li, H.M., Sun, J.R., Chen, J.L. 2002. Influence of temperature and humidity on the flight capacity of Sitobion avenae. Acta Entomologica Sinica, 45: 8085 (Chinese with English abstract).Google Scholar
Clark, A.J.Perry, K.L. 2002. Transmissibility of field isolates of soybean viruses by Aphis glycines. Plant Disease, 86: 12191222.CrossRefGoogle ScholarPubMed
Davis, J.A., Radcliffe, E.B., Ragsdale, D.W. 2005. Soybean aphid, Aphis glycines Matsumura, a new vector of potato virus Y in potato. American Journal of Potato Research, 82: 197201.CrossRefGoogle Scholar
Fehr, W.R.Caviness, C.E. 1977. Stages of soybean development. Special Report 80. Iowa State University, Ames, Iowa, United States of America.Google Scholar
Fox, T.B., Landis, D.A., Cardoso, F.F., Difonzo, C.D. 2005. Impact of predation on establishment of the soybean aphid, Aphis glycines in soybean, Glycine max. Biological Control, 50: 545563.Google Scholar
Gao, H.X., Han, L.L., Zhao, K.J., Fan, D., Liu, J. 2006. Cloning and sequencing of cytochrome oxidase II gene of Aphis glycines and its application in detecting natural enemies. Acta Entomologica Sinica, 49: 754758 (Chinese with English abstract).Google Scholar
Gao, J.F. 1991. Observation on Paragus quadrifasciatus in Tonghua County. Chinese Journal of Biological Control, 7: 95 (Chinese).Google Scholar
Gao, J.F. 1994. Biological characteristics and control effect of Lysiphlebia japonica (Hym: Braconidae) on Aphis glycines. Chinese Journal of Biological Control, 10: 9192 (Chinese).Google Scholar
Liu, J., Wu, K.M., Hopper, K.R., Zhao, K.J. 2004. Population dynamics of Aphis glycines (Homoptera: Aphididae) and its natural enemies in soybean in northern China. Annals of the Entomological Society of America, 97: 235239.CrossRefGoogle Scholar
Liu, J.Zhao, K.J. 2007. Biology and control techniques of soybean aphid. Chinese Bulletin of Entomology, 44: 179185 (Chinese with English abstract).Google Scholar
Losey, J.E., Waldron, J.K., Hoebeke, E.R., Macomber, L.E., Scott, B.N. 2002. First record of the soybean aphid, Aphis glycines Matsumura (Hemiptera Sternorrhyncha Aphididae), in New York. Great Lakes Entomologist, 35: 101105.Google Scholar
McCarville, M.T., Kanobe, C., MacIntosh, G.C., O'Neal, M. 2011. What is the economic threshold of soybean aphids (Hemiptera: Aphididae) in enemy-free space? Journal of Economic Entomology, 104: 845852.CrossRefGoogle ScholarPubMed
Meihls, L.N., Clark, T.L., Bailey, W.C., Ellersieck, M.R. 2010. Population growth of soybean aphid, Aphis glycines, under varying levels of predator exclusion. Journal of Insect Science, 10: 118.CrossRefGoogle ScholarPubMed
Meng, G.L.Liu, X.Q. 2002. Natural control of three ladybugs on soybean aphid. Journal of Changjiang Vegetables, 19: 3233 (Chinese with English abstract).Google Scholar
Miao, J., Wu, K.M., Hopper, K.R., Li, G.X. 2007. Population dynamics of Aphis glycines (Homoptera: Aphididae) and impact of natural enemies in northern China. Environmental Entomology, 36: 840848.CrossRefGoogle ScholarPubMed
Ragsdale, D.W., McCornack, B.P., Venette, R.C., Potter, B.D., MacRae, I.V., Hodgson, E.W., et al. 2007. Economic threshold for soybean aphid (Hemiptera: Aphididae). Journal of Economic Entomology, 100: 12581267.CrossRefGoogle ScholarPubMed
Rutledge, C.E., O'Neil, R.J., Fox, T.B., Landis, D.A. 2004. Soybean aphid predators and their use in integrated pest management. Annals of the Entomological Society of America, 97: 240248.CrossRefGoogle Scholar
Sun, B., Liang, S.B., Zhao, W.X. 2000. Outbreak of the soybean aphid in Suihua prefecture in 1998 and its control methods. Soybean Bulletin, 8: 5 (Chinese).Google Scholar
Wang, C.R., Deng, X.C., Yin, L.J., Song, Y.H., Zhang, D.Y., Shen, H.B. 2005. Analysis of soybean aphid's outbreak in Heilongjiang province in 2004. Soybean Bulletin, 13: 1920 (Chinese).Google Scholar
Weng, W.S.Huang, Y.Q. 1988. A preliminary study on a predacious insect, Brumoides lineatus (Weise). Chinese Bulletin of Entomology, 25: 105108 (Chinese).Google Scholar
Wu, Z., Schenk-Hamlin, D., Zhan, W., Ragsdale, W.D., Heimpel, E.G. 2004. The soybean aphid in China: a historical review. Annals of the Entomological Society of America, 97: 209218.CrossRefGoogle Scholar
Xue, B.H., Gao, J.F., Wang, W.H. 2000. Syrphids in soybean on southwest sidehill of Changbai Mountain and their control on soybean aphid. Journal of Jilin Agricultural Sciences, 25: 3334 (Chinese).Google Scholar