Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T10:52:10.088Z Has data issue: false hasContentIssue false

Influence of wing loading on Colorado potato beetle flight

Published online by Cambridge University Press:  02 April 2012

Chris J.K. MacQuarrie
Affiliation:
Agriculture and Agri-food Canada, Potato Research Centre, PO Box 20 280, 850 Lincoln Road, Fredericton, New Brunswick, Canada E3B 4Z7, and Population Ecology Group, Department of Biology, University of New Brunswick, 28 Dineen Drive, Fredericton, New Brunswick, Canada E3B 6E1
Gilles Boiteau*
Affiliation:
Agriculture and Agri-food Canada, Potato Research Centre, PO Box 20 280, 850 Lincoln Road, Fredericton, New Brunswick, Canada E3B 4Z7, and Population Ecology Group, Department of Biology, University of New Brunswick, 28 Dineen Drive, Fredericton, New Brunswick, Canada E3B 6E1
Dan Quiring
Affiliation:
Population Ecology Group, Department of Biology, University of New Brunswick, 28 Dineen Drive, Fredericton, New Brunswick, Canada E3B 6C1
*
1 Corresponding author (e-mail: [email protected]).

Abstract

Flight of overwintered and summer population Colorado potato beetles, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae), with a range of wing loadings was measured following exposure to different quality diets. Beetles fed a diet of insect-resistant foliage expressing Bacillus thuringiensis tenebrioniz toxins, beetles that did not feed but consumed water, and those that were starved without access to water exhibited a lower range of wing loadings than those fed conventional foliage, but there was no corresponding increase in flight frequency. Exposing potato beetles to poor food or no food resulted in a wing-loading range of 50–140 mg/cm2 compared with a range of 80–200 mg/cm2 for beetles fed conventional foliage. No flight was observed when wing loadings were less than 80 mg/cm2 of wing surface, presumably because of other physiological processes associated with poor nutrition and not because of wing loading per se. Overwintered and summer population beetles fed a diet of conventional potato foliage did not take off when wing loading exceeded 150 mg/cm2 of supporting wing surface. Similar trade-offs between flight capacity and consumption of large meals may exist for other insects.

Résumé

Nous avons mesuré l'effet de différentes diètes, représentatives d'une vaste étendue de charges alaires, sur le vol de populations de printemps et d'été du doryphore de la pomme de terre, Leptinotarsa decemlineata Say (Coleoptera : Chrysomelidae). Les doryphores auxquels on avait offert du feuillage exprimant la toxine de Bacillus thuringiensis tenebrioniz, les doryphores exposés au jeûne mais en présence d'eau ainsi que ceux exposés au jeûne sans accès à l' eau furent caractérisés par des charges alaires inférieures à celles des doryphores ayant eu accès à du feuillage normal. Cette réduction des charges alaires n'a pas eu un effet correspondant sur la fréquence de vol. La charge alaire des doryphores exposés au jeûne ou à de la nourriture de qualité inférieure a varié entre 50–140 mg/cm2 comparativement à 80–200 mg/cm2 dans le cas des doryphores ayant eu accès à de la nourriture normale. Aucun vol ne fut observé lorsque la charge alaire était inférieure à 80 mg/cm2. Cette absence de vol ne résulte probablement pas de la basse charge alaire elle-même mais des processus physiologiques reliés au jeûne. Les doryphores de printemps et d'été exposés à du feuillage normal cessèrent de s'envoler lorsque la charge alaire excéda 150 mg/cm2. Ce seuil d'envol résulte probablement de la charge alaire. Ce genre de choix entre la capacité de vol et la consommation abondante de nourriture que doit faire le doryphore semble exister chez d'autres insectes.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acheampong, S., Mitchell, B.K. 1997. Quiescence in the Colorado potato beetle. Entomologia Experimentalis et Applicata 82: 83–9CrossRefGoogle Scholar
Alyokhin, A.V., Ferro, D.N. 1999. Modifications in dispersal and oviposistion of Bt-resistant and Bt-susceptible Colorado potato beetle as a result of exposure to Bacillus thuringiensis subsp. tenebrionis Cry3a toxin. Entomologia Experimentalis et Applicata 90: 93101CrossRefGoogle Scholar
Alyokhin, A., Ferro, D.N., Hoy, C.W., Head, G. 1999. Laboratory assessment of flight activity displayed by Colorado potato beetles (Coleoptera: Chrysomelidae) fed on transgenic and Cry3a toxin-treated potato foliage. Journal of Economic Entomology 92: 115–20CrossRefGoogle Scholar
Boiteau, G. 2000. Efficiency of flight interception traps for adult Colorado potato beetles (Coleoptera: Chrysomelidae). Journal of Economic Entomology 93: 630–5CrossRefGoogle ScholarPubMed
Boiteau, G. 2002. Flight takeoff behavior of Colorado potato beetle. The Canadian Entomologist 134: 229–40CrossRefGoogle Scholar
Boiteau, G., Colpitts, B. 2001. Electronic tags for the tracking of insects in flight: effect of weight on flight performance of adult Colorado potato beetles. Entomologia Experimentalis et Applicata 100: 187–93CrossRefGoogle Scholar
Boiteau, G., Pelletier, Y., Misener, G.C., Bernard, G. 1994. Development and evaluation of a plastic trench for protection of potato from walking adult Colorado potato beetles (Coleoptera: Chrysomelidae). Journal of Economic Entomology 87: 1325–31CrossRefGoogle Scholar
Byrne, D.N. 1988. Relationship between wing loading, wingbeat frequency and body mass in homopterous insects. Journal of Experimental Biology 135: 923CrossRefGoogle Scholar
Caprio, M.A., Grafius, E.J. 1990. Effects of light, temperature and feeding status on flight initiation in postdiapause Colorado potato beetles (Coleoptera: Chrysomelidae). Environmental Entomology 19: 281–5CrossRefGoogle Scholar
Chapman, R.F. 1982. Flight activity. pp 271302in Chapman, R.F. (Ed), The insects structure and function. Cambridge, Massachusetts: Harvard University PressGoogle Scholar
Corbet, S.A. 2000. Butterfly nectaring flowers: butterfly morphology and flower form. Entomologia Experimentalis et Applicata 96: 289–98CrossRefGoogle Scholar
Ferro, D.N., Tuttle, A.F., Weber, D.C. 1991. Ovipositional and flight behavior of overwintered Colorado potato beetle (Coleoptera: Chrysomelidae). Environmental Entomology 20: 1309–14CrossRefGoogle Scholar
Gibson, A., Gorham, R.P., Hudson, H.F., Flock, J.A. 1925. The Colorado potato beetle (Leptinotarsa decemlineata Say) in Canada. Ottawa, Ontario: Dominion of Canada Department of AgricultureGoogle Scholar
Hepburn, H.R., Radloff, S.E., Fuchs, S. 1999. Flight machinery dimensions of honeybees, Apis mellifera. Journal of Comparative Physiology B Metabolic and Transport Functions 169: 107–12CrossRefGoogle Scholar
Hurst, G.W. 1975. Meteorology and the Colorado potato beetle. Geneva, Switzerland: Secretariat of the World Meteorlogical OrganizationGoogle Scholar
Régents Instruments Inc. 19962001. WINFOLIA. Version 4.2 [computer program]. Québec, Quebec: Régents Instruments IncGoogle Scholar
Johnson, C.G. 1969. Migration and dispersal of insects by flight. London: Methuen and Co LtdGoogle Scholar
Le Berre, J.R., Roubaud, É. 1952. Contribution à l'étude du déterminisme de l'envol du Doryphore. Academie des Sciences 234: 1092–4Google Scholar
Mitchell, B.K., Low, R. 1994. The structure of feeding behavior on the Colorado potato beetle Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Journal of Insect Behavior 7: 707–29CrossRefGoogle Scholar
Mordue, W., de Kort, C.A.D. 1978. Energy substrates for flight in Colorado beetle, Leptinotarsa decemlineata Say. Journal of Insect Physiology 24: 221–4CrossRefGoogle Scholar
Napoleon, M.E., King, B.H. 1999. Offspring sex ratio response to host size of the parasitoid wasp Spalangia endius. Behavioural Ecology and Sociobiology 46: 325–32CrossRefGoogle Scholar
Pétavy, G., Morin, J.P., Moreteau, B., David, J.R. 1997. Growth temperature and phenotypic plasticity in two Drosophila sibling species: probable adaptive changes in flight capacities. Journal of Evolutionary Biology 10: 875–87Google Scholar
Roitberg, B.D., Mondor, E.B., Tyerman, J.G.A. 2003. Pouncing spider, flying mosquito: blood acquisition increases predation risk in mosquitos. Behavioral Ecology 14: 142–6CrossRefGoogle Scholar
Sandeson, P.D., Boiteau, G., Le Blanc, J.P.R. 2002. Adult density and the rate of Colorado potato beetle (Coleoptera: Chrysomelidae) flight take-off. Environmental Entomology 31: 533–7CrossRefGoogle Scholar
Schlaepfer, M.A., McNeil, J.N. 2000. Are virgin male lepidopterans more successful in mate acquisition than previously mated individuals? A study of European corn borer, Ostrina nubilalis (Lepidoptera: Pyralidae). Canadian Journal of Zoology 78: 2045–50CrossRefGoogle Scholar
Sokal, R.R., Rohlf, F.J. 1981. Biometry. San Francisco, California: WH Freeman and CoGoogle Scholar
Starmer, W.T., Wolf, L.L. 1989. Causes of Variation in wing loading among Drosophila species. Biological Journal of the Linnean Society 37: 247–61CrossRefGoogle Scholar
Termier, M., Lafay, J.F., Dutrieux, G., Mainguet, A.M. 1988. Étude de l'action de certains facteurs sur les performances de vol du doryphore Leptinotarsa decemlineata (Say). Oecologica Applicata 9: 219–48. Montrouge, France: Gauthier-VillarsGoogle Scholar
Unruh, T.R., Chauvin, R.L. 1993. Elytral punctures: a rapid reliable method for marking Colorado potato beetle. The Canadian Entomologist 125: 5563CrossRefGoogle Scholar
Weber, D.C., Ferro, D.N. 1996. Flight and fecundity of Colorado potato beetles (Coleoptera: Chrysomelidae) fed on different diets. Annals of the Entomological Society of America 89: 297306CrossRefGoogle Scholar
Weber, D.C., Ferro, D.N., Stoffolano, J.J.G. 1993. Quantifying flight of Colorado potato beetle (Coleoptera: Chrysomelidae) with a microcomputer-based flight mill system. Annals of the Entomological Society of America 86: 366–71CrossRefGoogle Scholar
Weeda, W. 1981. Hormonal regulation of proline synthesis and glucose release in the fat body of the Colorado potato beetle, Leptinotarsa decemlineata. Journal of Insect Physiology 27: 411–7CrossRefGoogle Scholar
Weis-Fogh, T. 1973. Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. Journal of Experimental Biology 59: 169230CrossRefGoogle Scholar
Wilusz, Z. 1958. From studies of the spring migration of the Colorado beetle [translated from Polish]. Polska Akademia Nauk Series A 78: 7994Google Scholar
Zar, J.H. 1999. Biostatistical analysis. 4th edition. Upper Saddle River, New Jersey: Prentice Hall IncGoogle Scholar