Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-30T23:13:34.505Z Has data issue: false hasContentIssue false

INFLUENCE OF TEMPERATURE AND LARVAL DENSITY ON FLIGHT PERFORMANCE OF DIABROTICA VIRGIFERA VIRGIFERA LECONTE (COLEOPTERA: CHRYSOMELIDAE)

Published online by Cambridge University Press:  31 May 2012

Steven E. Naranjo
Affiliation:
USDA-ARS, Northern Grain Insects Research Laboratory, RR #3, Brookings, South Dakota, USA 57006

Abstract

The influence of temperature and larval density on the flight performance of Diabrotica virgifera virgifera LeConte was quantified in the laboratory using a tethered flight system. Temperature had a significant influence on trivial flight performance in males and in both young (5 day) and older (25 day) females. The proportion of beetles undertaking trivial flight, and trivial flight duration and frequency peaked at temperatures around 20–25°C. Generally, males were more active than females at lower temperatures. Female beetles did not display sustained flight behavior at 15 or 35°C and males did not undertake sustained flight at 30 or 35°C. Sustained flight duration was unaffected by temperature. Rearing larvae at different densities influenced adult size but had only subtle effects on adult flight performance. Larval density significantly influenced trivial flight duration and frequency of older females and flight frequency of males but had no effect on young females. In general, trivial flight performance peaked when larvae were reared at moderate densities (500–750 per primary rearing container). In young females the propensity for sustained flight, but not flight duration, declined with increasing larval density.

Résumé

L’influence de la température et de la densité larvaire sur l’exécution de vol des adultes de Diabrotica virgifera virgifera LeConte a été évaluée quantitativement en utilisant un système attaché du vol. La température a eu une influence importante sur l’exécution du vol banal pour les mâles, et pour les femelles âgées de 5 jours et celles âgées de 25 jours, toutes les deux. La proportion d’adultes qui a entrepris le vol banal, et la durée et fréquence de ce vol ont atteint les maximums aux températures autour 20–25°C. Généralement, les mâles ont été plus actifs que les femelles aux basses températures. Les adultes du sexe féminin n’ont pas présenté le vol soutenu à 15 ou à 35°C et les mâles n’ont pas entrepris le vol soutenu à 30 ou à 35°C. La durée du vol soutenu n’a pas été touchée par la température. L’élevage des larves à des densités différentes a eu une influence sur la grosseur des adultes, mais n’a eu que des effets subtiles sur l’exécution du vol par ceux-ci. La densité larvaire a eu une influence importante en ce qui concerne la durée du vol banal et la fréquence de vol des femelles âgées, et la fréquence du vol de mâles, mais a été sans effet en ce qui concerne les jeunes femelles. Par l’habitude, l’exécution du vol banal a atteint son maximum quand les larves avaient été élevées dans une densité modérée (500–750 par bac d’élevage primaire). Dans le cas de jeunes femelles, la tendance naturelle du vol soutenu a diminué en mesure que la densité larvaire a augmenté, ce qui n’a pas été le cas pour la durée du vol.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barfield, C.S., Waters, D.J., and Beck, H.W.. 1988. Flight device and database management system for quantifying insect flight and oviposition. J. econ. Ent. 81: 15061509.CrossRefGoogle Scholar
Branson, T.F., Jackson, J.J., and Sutter, G.R.. 1988. Improved method for rearing Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). J. econ. Ent. 81: 410414.CrossRefGoogle Scholar
Branson, T.F., and Sutter, G.R.. 1985. Influence of population density of immature on size, longevity, and fecundity of adult Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). Environ. Ent. 14: 687690.CrossRefGoogle Scholar
Cinereski, J.E., and Chiang, H.C.. 1968. The pattern of movement of adults of the northern corn rootworm inside and outside of corn fields. J. econ. Ent. 61: 15311536.CrossRefGoogle Scholar
Coats, S.A., Tollefson, J.J., and Mutchmor, J.A.. 1986. Study of migratory flight in the western corn rootworm (Coleoptera: Chrysomelidae). Environ. Ent. 15: 620625.CrossRefGoogle Scholar
Conover, W.J. 1980. Practical Nonparametric Statistics, 2nd ed. John Wiley and Sons, New York, NY. 493 pp.Google Scholar
Elliott, N.C., Sutter, G.R., Branson, T.F., and Fisher, J.R.. 1989. Effect of population density of immatures on survival and development of the western corn rootworm (Coleoptera: Chrysomelidae). J. ent. Sci. 24: 209213.Google Scholar
Godfrey, L.D., and Turpin, F.T.. 1983. Comparison of western corn rootworm (Coleoptera: Chrysomelidae) adult populations and economic thresholds in first-year and continuous corn fields. J. econ. Ent. 76: 10281032.CrossRefGoogle Scholar
Grant, R.H., and Seevers, K.P.. 1989. Local and long-range movement of adult western corn rootworm (Coleoptera: Chrysomelidae) as evidenced by washup along southern Lake Michigan shores. Environ. Ent. 18: 266272.CrossRefGoogle Scholar
Haddock, R.C. 1984. Orientation and movement of the northern corn rootworm, Diabrotica barberi (Coleoptera: Chrysomelidae) over large and small distances. Ph.D. dissertation, Cornell University, Ithaca, NY.Google Scholar
Hill, R.E., and Mayo, ZB. 1980. Distribution and abundance of corn rootworm species as influenced by topography and crop rotation in eastern Nebraska. Environ. Ent. 9: 122127.CrossRefGoogle Scholar
Hirata, S. 1956. Influence of larval density upon variations observed in the adult stage on the phase variation of cabbage armyworm, Mamestra brassicae. II. Influence of larval density on the variations observed in the adult. Res. Pop. Ecol. 3: 7992.CrossRefGoogle Scholar
Johnson, C.G. 1969. Migration and Dispersal of Insects by Flight. Methuen, London. 763 pp.Google Scholar
Krysan, J.L., Foster, D.E., Branson, T.F., Ostlie, K.R., and Cranshaw, W.S.. 1986. Two years before hatch: Rootworms adapt to crop rotation. Bull. ent. Soc. Am. 32: 250253.Google Scholar
McManus, M.L. 1988. Weather, behavior and insect dispersal. pp. 71–94 in Sahota, T.S., and Holling, C.S. (Eds.), Paths from a Viewpoint: The Wellington Festschrift on Insect Ecology. Mem. ent. Soc. Can. 146. 213 pp.Google Scholar
Naranjo, S.E. 1990. Comparative flight behavior of Diabrotica virgifera virgifera and Diabrotica barberi in the laboratory. Entomologia exp. appl. 55: 7990.CrossRefGoogle Scholar
Naranjo, S.E., and Sawyer, A.J.. 1989. A simulation model of northern corn rootworm, Diabrotica barberi (Coleoptera: Chrysomelidae), population dynamics and oviposition: Significance of host plant phenology. Can. Ent. 121: 169191.CrossRefGoogle Scholar
Nayar, J.K., and Sauerman, D.M. Jr., 1969. Flight behavior and phase polymorphism in the mosquito Aedes taeniorhynchus. Entomologia exp. appl. 12: 365375.CrossRefGoogle Scholar
Peters, T.M., and Barbosa, P.. 1977. Influence of population density on size, fecundity and developmental rate of insects in culture. A. Rev. Ent. 22: 431450.CrossRefGoogle Scholar
Shaw, M.J.P. 1970 a. Effects of population density on alienicolae of Aphis fabae Scop. II. The effects of crowding on the production of alatae in the laboratory. Ann. Appl. Biol. 65: 191196.CrossRefGoogle Scholar
Shaw, M.J.P. 1970 b. Effects of population density on alienicolae of Aphis fabae Scop. II. The effects of crowding on the expression of migratory urge among alatae in the laboratory. Ann. Appl. Biol. 65: 197203.CrossRefGoogle Scholar
Sokal, R.R., and Rohlf, F.J.. 1981. Biometry, 2nd Ed. W.H. Freeman and Company, New York, NY. 859 pp.Google Scholar
Taylor, L.R. 1963. Analysis of the effect of temperature on insects in flight. J. Anim. Ecol. 32: 99117.CrossRefGoogle Scholar
VanWoerkom, G.J., Turpin, F.T., and Barrett, J.R. Jr., 1980. Influence of constant and changing temperatures on locomotor activity of adult western corn rootworms (Diabrotica virgifera) in the laboratory. Environ. Ent. 9: 3234.CrossRefGoogle Scholar
Wales, P.J., Barfield, C.S., and Leppla, N.C.. 1985. Simultaneous monitoring of flight and oviposition of individual velvetbean caterpillar moths. Physiol. Ent. 10: 467472.CrossRefGoogle Scholar
Weiss, M.J., Seevers, K.P., and Mayo, ZB. 1985. Influence of western corn rootworm larval densities and damage on corn rootworm survival, developmental time, size and sex ratio (Coleoptera: Chrysomelidae). J. Kansas ent. Soc. 58: 397402.Google Scholar
Witkowski, J.F., Owens, J.C., and Tollefson, J.J.. 1975. Diel activity and vertical flight distribution of adult western corn rootworm in Iowa cornfields. J. econ. Ent. 68: 351352.CrossRefGoogle Scholar
Zar, J.H. 1984. Biostatistical Analysis, 2nd ed. Prentice Hall, Inc., Engelwood Cliffs, NJ.Google Scholar