Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T21:00:45.815Z Has data issue: false hasContentIssue false

Influence of prey size and environmental factors on predation by Podisus maculiventris (Hemiptera: Pentatomidae) on viburnum leaf beetle (Coleoptera: Chrysomelidae)

Published online by Cambridge University Press:  02 April 2012

Gaylord A. Desurmont*
Affiliation:
Department of Entomology, Cornell University, Ithaca, New York 14853-2601, United States of America
Paul A. Weston
Affiliation:
Department of Entomology, Cornell University, Ithaca, New York 14853-2601, United States of America
*
1Corresponding author (e-mail: [email protected]).

Abstract

Experiments were conducted under laboratory conditions to determine the influence of the relative sizes of predator and prey, temperature, presence of refugia, size of the search area, and host-plant species on the predation performance of Podisus maculiventris (Say) nymphs against viburnum leaf beetle, Pyrrhalta viburni (Paykull), a new landscape pest in North America that feeds on the foliage of species of Viburnum L. (Caprifoliaceae). Predator handling time was positively correlated with body mass of the prey for all instars of P. maculiventris, but the rate of increase of handling time relative to prey mass decreased as predator age increased. Temperature was positively correlated with predation rates, but the presence of refugia did not have an impact on predation. The influence of host-plant species and size of the search area was tested on southern arrowwood (Viburnum dentatum L.) and American cranberrybush (Viburnum opulus L. var. americanum Aiton). There was a significant interaction between plant species and size of the search area, the species effect becoming significant as leaf surface area increased. In the case of southern arrowwood a negative correlation between size of the search area and predation rate was also detected. The identification of these factors adds valuable knowledge for using P. maculiventris as a biological-control agent against P. viburni.

Résumé

Nous avons fait des expériences en conditions de laboratoire pour déterminer l’influence de la taille relative prédateur:proie, de la température, de la présence de refuges, de l’importance de la surface de recherche et de l’espèce de plante hôte sur la performance des larves prédatrices de Podisus maculiventris (Say) contre la galéruque de la viorne, Pyrrhalta viburni (Paykull), un nouveau ravageur des paysages en Amérique du Nord qui se nourrit du feuillage d’espèces de Viburnum L. (Caprifoliaceae). Il y a une corrélation positive entre le temps de manipulation et la masse de la proie chez tous les stades de P. maculiventris, mais le taux d’augmentation du temps de manipulation par unité de masse de la proie décroît à mesure que les prédateurs deviennent plus âgés. Il existe une corrélation positive entre la température et les taux de prédation, mais la présence de refuges n’affecte pas la prédation. Nous avons vérifié l’influence de l’espèce de plante hôte et de la taille de l’aire de recherche chez la viorne dentée (Viburnum dentatum L.) et la viorne trilobée (Viburnum opulus L. var. americanum Aiton). Il y a une interaction significative entre l’espèce de plante et la surface de l’aire de recherche, l’effet de l’espèce devenant significatif avec l’accroissement de la surface de la feuille. Nous avons aussi détecté une corrélation négative entre la surface de l’aire de recherche et le taux de prédation chez la viorne dentée. L’identification de ces facteurs apporte des renseignements importants pour l’utilisation de P. maculiventris comme agent de lutte biologique contre P. viburni.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldrich, J.R., and Cantelo, W.W. 1999. Suppression of Colorado potato beetle infestation by pheromonemediated augmentation of the predatory spined soldier bug, Podisus maculiventris (Say) (Heteroptera: Pentatomidae). Agricultural and Forest Entomology, 1: 209217.CrossRefGoogle Scholar
Aldrich, J.R., Zanuncio, J.C., Vilela, E.F., Torres, J.B., and Cave, R.D. 1997. Field tests of predaceous pentatomid pheromones and semiochemistry of Podisus and Supputius species (Heteroptera Pentatomidae Asopinae). Anais da Sociedade Entomologica do Brasil, 26: 114.CrossRefGoogle Scholar
Analytical Software. 2003. Statistix® user manual. Release 8.0 for Windows®. Analytical Software, Tallahasse, Florida.Google Scholar
Bozer, S.F., Traugott, M.S., and Stamp, N.E. 1996. Combined effects of allelochemicalfed and scarce prey on the generalist insect predator Podisus maculiventris. Ecological Entomology, 21: 328334.CrossRefGoogle Scholar
Cytel Inc. 1996. StatXact® user manual. Release 4.0 for Windows®. Cytel Inc., Cambridge, Massachusetts.Google Scholar
De Clercq, P., and Degheele, D. 1992. Development and survival of Podisus maculiventris (Say) and Podisus sagitta (Fab.) (Heteroptera: Pentatomidae) at various constant temperatures. The Canadian Entomologist, 124: 125133.CrossRefGoogle Scholar
De Clercq, P., and Degheele, D. 1993. Quality of predatory bugs of the genus Podisus (Heteroptera: Pentatomidae) reared on natural and artificial diets. In Proceedings of the 7th Workshop of the IOBC Global Working Group “Quality Control of Mass Reared Arthropods”, Rimini, Italy, 13–16 September 1993. Edited by Nicoli, G.Benuzzi, M., and Leppla, N.C.. pp. 129142.Google Scholar
De Clercq, P., and Degheele, D. 1994. Laboratory measurement of predation by Podisus maculiventris and P. sagitta (Hemiptera: Pentatomidae) on beet armyworm (Lepidoptera: Noctuidae). Journal of Economic Entomology, 87: 7683.CrossRefGoogle Scholar
Desurmont, G.A. 2006. Evaluation of Podisus maculiventris (Say) as a biological control agent against viburnum leaf beetle [Pyrrhalta viburni (Paykull)]. M.S. thesis, Cornell University, Ithaca, New York.Google Scholar
Evans, E.W. 1982. Consequences of body size for fecundity in the predatory stinkbug, Podisus maculiventris (Hemiptera: Pentatomidae). Annals of the Entomological Society of America, 75: 418420.CrossRefGoogle Scholar
Glenister, C.S. 1998. Predatory heteropterans in augmentative biological control: an industry perspective. In Predatory Heteroptera in agroecosystems: their ecology and use in biological control. Edited by Coll, M. and Ruberson, J.R.. Thomas Say Publications in Entomology, Entomological society of America, Lanham, Maryland. pp. 199208.Google Scholar
Holland, J.M., Thomas, S.R., and Hewitt, A. 1996. Some effects of polyphagous predators on an outbreak of cereal aphid (Sitobion avenae F.) and orange wheat blossom midge (Sitodiplosis mosselana Gehin). Agriculture, Ecosystems, and Environment, 59: 181190.CrossRefGoogle Scholar
Holling, C.S. 1959. Some characteristics of simple types of predation and parasitism. The Canadian Entomologist, 91: 385398.CrossRefGoogle Scholar
Hough-Goldstein, J.A. 1998. Use of predaceous pentatomids in integrated management of the Colorado potato beetle (Coleoptera: Chrysomelidae). In Predatory Heteroptera in agroecosystems: their ecology and use in biological control. Edited by Coll, M. and Ruberson, J.R.. Thomas Say Publications in Entomology, Entomological Society of America, Lanham, Maryland. pp. 209233.Google Scholar
McPherson, J.E. 1982. The Pentatomidae (Hemiptera) of northeastern North America. Southern Illinois University Press, Carbondale and Edwardsville, Illinois.Google Scholar
Mohaghegh, J., De Clercq, P., and Tirry, L. 2001. Functional response of the predators Podisus maculiventris (Say) and Podisus nigrispinus (Dallas) (Het., Pentatomidae) to the beet armyworm, Spodoptera exigua (Hubner) (Lep., Noctuidae): effect of temperature. Journal of Applied Entomology, 125: 131134.CrossRefGoogle Scholar
Mukerji, M.K., and LeRoux, E.J. 1969. The effect of predator age on the functional response of Podisus maculiventris to the prey size of Galleria mellonella. The Canadian Entomologist, 46: 4060.Google Scholar
SAS Institute Inc. 1997. SAS/STAT® user's guide. SAS Institute, Cary, North Carolina.Google Scholar
Symondson, W.O.C., Sunderland, K.D., and Greenstone, M.H. 2002. Can generalist predators be effective biological control agents? Annual Review of Entomology, 47: 561594.CrossRefGoogle Scholar
Takabayashi, J., Dicke, M., Takahashi, S., Posthumus, M.A., and van Beek, T.A. 1994. Leaf age affects composition of herbivoreinduced synomones and attraction of predatory mites. Journal of Chemical Ecology, 20: 373386.CrossRefGoogle ScholarPubMed
Thomas, F.M., and Schafellner, C. 1999. Effects of excess nitrogen and drought on the foliar concentrations of allelochemicals in young oaks (Quercus robur L. and Q. petraea (Matt.) Liebl.). Journal of Applied Botany, 73: 222227.Google Scholar
Warren, L.O., and Wallis, G. 1971. Biology of the spined soldier bug, Podisus maculiventris (Hemiptera: Pentatomidae). Journal of the Georgia Entomological Society, 6: 109116.Google Scholar
Wei, X., Xu, X., De Loach, C.J. 1995. Biological control of white grubs (Coleoptera: Scarabeidae) by larvae of Promachus yesinocus (Diptera: Asilidae) in China. Biological Control, 5: 290296.CrossRefGoogle Scholar
Weiser, L.A., and Stamp, N.E. 1998. Combined effects of allelochemicals, prey availability, and supplemental plant material on growth of a generalist insect predator. Entomologia Experimentalis et Applicata, 87: 181189.CrossRefGoogle Scholar
Weston, P.A., and Desurmont, G.A. 2002. Suitability of various species of Viburnum as hosts for Pyrrhalta viburni, an introduced leaf beetle. Journal of Environmental Horticulture, 20: 224227.CrossRefGoogle Scholar
Wiedenmann, R.N., and O'Neil, R.J. 1991. Laboratory measurement of the functional response of Podisus maculiventris (Say) (Heteroptera: Pentatomidae). Environmental Entomology, 20: 610614.CrossRefGoogle Scholar
Zanuncio, J.C., Guedes, R.N., Garcia, J.F., and Rodrigues, L.A. 1993. Impact of two formulations of deltamethrin in aerial applications against Eucalyptus caterpillars and their predaceous bugs. Mededelingen van de Faculteit Landbouwwetenschappen Rijksuniversiteit Gent, 58: 477481.Google Scholar