Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T11:20:19.406Z Has data issue: false hasContentIssue false

Influence of elevation and avian or mammalian hosts on attraction of Culex pipiens (Diptera: Culicidae) in southern Ontario

Published online by Cambridge University Press:  02 April 2012

Curtis Russell
Affiliation:
Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario, Canada L2S 3A1
Fiona F. Hunter*
Affiliation:
Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario, Canada L2S 3A1
*
1 Corresponding author (e-mail: [email protected]).

Abstract

We studied Culex pipiens L. in the Niagara Region of Ontario, Canada, to establish whether or not these mosquitoes are attracted to hosts other than birds at different elevations or as the season progresses. Guinea-pigs and chickens were used as representative mammalian and avian hosts, respectively. Bait animals were placed next to modified CDC miniature light traps (no light and no CO2) hung 1.5 or 5 m above ground in a Niagara woodlot. The season was divided into three 6-week periods (early, middle, and late). Significantly more C. pipiens were captured at the 5 m than at the 1.5 m elevation. In general, chicken-baited traps were preferred over control and guinea-pig-baited traps, with one important exception: there was no significant difference among traps during the late period at 1.5 m elevation. The potential role of C. pipiens as a bridging vector of West Nile virus to humans is discussed.

Résumé

Nous avons étudié des Culex pipiens L. dans la région de Niagara en Ontario, Canada, afin de déterminer si ces moustiques sont attirés par des hôtes autres que des oiseaux en fonction de la hauteur et au cours de la saison. Des cobayes et des poulets ont servi d'hôtes représentatifs, respectivement des mammifères et des oiseaux. Les animaux appâts ont été placés près de pièges lumineux CDC miniatures modifiés (sans lumière, ni CO2) pendus à 1,5 et à 5 m au-dessus du sol dans une région boisée de Niagara. La saison a été divisée en trois périodes de 6 semaines (précoce, médiane et tardive). Il y a eu significativement plus de captures de C. pipiens à la hauteur de 5 m qu’à 1,5 m. En général, les pièges munis d'un poulet sont choisis de préférence aux pièges témoins et à ceux qui contiennent un cobaye, sauf qu’exceptionnellement il n’y a pas eu de différence significative entre les pièges durant la période tardive à la hauteur de 1,5 m. Le rôle de C. pipiens comme vecteur-pont potentiel du virus du Nil occidental chez les humains fait l'objet d'une discussion.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J.F., Andreadis, T.G., Main, A.J., and Kline, D.L. 2004. Prevalence of West Nile virus in tree canopy-inhabiting Culex pipiens and associated mosquitoes. American Journal of Tropical Medicine and Hygiene, 71: 112119. PMID:15238699.CrossRefGoogle ScholarPubMed
Andreadis, T.G., and Armstrong, P.M. 2007. A two-year evaluation of elevated canopy trapping for Culex mosquitoes and West Nile virus in an operational surveillance program in the northeastern United States. Journal of the American Mosquito Control Association, 23: 137148. PMID:17847845 doi:10.2987/8756-971X(2007)23[137:ATEOEC]2.0.CO;2.CrossRefGoogle Scholar
Andreadis, T.G., Anderson, J.F., Vossbrinck, C.R., and Main, A.J. 2004. Epidemiology of West Nile virus in Connecticut: a five-year analysis of mosquito data 1999–2003. Vector-Borne and Zoonotic Diseases, 4: 360378. PMID:15682518 doi:10.1089/vbz.2004.4.360.CrossRefGoogle ScholarPubMed
Apperson, C.S., Harrison, B.A., Unnasch, T.R., Hassan, H.K., Irby, W.S., Savage, H.M., et al. 2002. Host-feeding habits of Culex and other mosquitoes (Diptera: Culicidae) in the borough of Queens in New York City, with characters and techniques for identification of Culex mosquitoes. Journal of Medical Entomology, 39: 777785. PMID:12349862 doi:10.1603/0022-2585-39.5.777.CrossRefGoogle ScholarPubMed
Apperson, C.S., Hassan, H.K., Harrison, B.A., Savage, H.M., Aspen, S.E., Farajollahi, A., et al. 2004. Host feeding patterns of established potential mosquito vectors of West Nile virus in the eastern United States. Vector-Borne and Zoonotic Diseases, 4: 7182. PMID:15018775 doi:10.1089/153036604773083013.CrossRefGoogle ScholarPubMed
Campbell, G.L., Marfin, A.A., Lanciotti, R.S., and Gubler, D.J. 2002. West Nile Virus. Lancet Infectious Diseases, 2: 519529. PMID:12206968 doi:10.1016/S1473-3099(02)00368-7.CrossRefGoogle ScholarPubMed
Darbro, J.M., and Harrington, L.C. 2006. Bird-baited traps for surveillance of West Nile Virus mosquito vectors: effect of bird species, trap height, and mosquito escape rates. Journal of Medical Entomology, 43: 8392. PMID:16506452 doi:10.1603/0022-2585(2006)043[0083:BTFSOW]2.0.CO;2.CrossRefGoogle ScholarPubMed
Drummond, C.L., Drobnack, J., Backenson, P.B., Ebel, G.D., and Kramer, L.D. 2006. Impact of trap elevation on estimates of abundance, parity rates, and body size of Culex pipiens and Culex restuans (Diptera: Culicidae). Journal of Medical Entomology, 43: 177184. PMID:16619596 doi:10.1603/0022-2585(2006)043[0177:IOTEOE]2.0.CO;2.CrossRefGoogle ScholarPubMed
Gingrich, J.B., and Williams, G.M. 2005. Hostfeeding patterns of suspected West Nile virus mosquito vectors in Delaware, 2001–2002. Journal of the American Mosquito Control Association, 21: 194200. PMID:16033122 doi: 10.2987]8756-971X(2005)21[194:HPOSWN]2.0.CO;2.CrossRefGoogle ScholarPubMed
Hamer, G.L., Kitron, U.D., Goldberg, T.L., Brawn, J.D., Loss, S.R., Ruiz, M.O., et al. 2009. Host selection by Culex pipiens mosquitoes and West Nile Virus amplification. American Journal of Tropical Medicine and Hygiene, 80: 268278. PMID:19190226.CrossRefGoogle ScholarPubMed
Kilpatrick, A.M., Kramer, L., Jones, M.J., Marra, P.P., and Daszak, P. 2006. West Nile Virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biology, 4: 606610. doi:10.1371/journal.pbio.0040082.CrossRefGoogle ScholarPubMed
Kulasekera, V.L., Kramer, L., Nasci, R.S., Mostashari, F., Cherry, B., Trock, , et al. 2001. West Nile infection in mosquitoes, birds, horses, and humans, Staten Island, New York. Emerging Infectious Diseases, 7: 722725. PMID:11589172 doi:10.3201/eid0704.010421.CrossRefGoogle ScholarPubMed
Lundstrom, J.O., Chirico, J., Folke, A., and Dahl, C. 1996. Vertical distribution of adult mosquitoes (Diptera: Culicidae) in southern and central Sweden. Journal of Vector Ecology, 21: 159166.Google Scholar
Main, A.J., Tonn, R.J., Randall, E.J., and Anderson, K.S. 1966. Mosquito densities at heights of five and twenty-five feet in southeastern Massachusetts. Mosquito News, 26: 243248.Google Scholar
Microsoft Corporation. 2005. Microsoft C++ [computer program]. Microsoft Corporation, Redmond, Washington.Google Scholar
Mitchell, L. 1982. Time-segregated mosquito collections with a CDC miniature light trap. Mosquito News, 42: 1218.Google Scholar
Mitchell, L., and Rockett, L. 1979. Vertical stratification preferences of adult female mosquitoes in a sylvan habitat (Diptera: Culicidae). The Great Lakes Entomologist, 12: 219223.Google Scholar
Molaei, G., Andreadis, T.G., Armstrong, P.M., Anderson, J.F., and Vossbrinck, C.R. 2006. Host feeding patterns of Culex mosquitoes and West Nile Virus transmission, northeastern United States. Emerging Infectious Diseases, 12: 468474 PMID:16704786.CrossRefGoogle ScholarPubMed
Nasci, R.S., and Edman, J.D. 1981. Vertical and temporal flight activity of the mosquito Culiseta melanura (Diptera: Culicidae) in southeastern Massachusetts. Journal of Medical Entomology, 18: 501504.CrossRefGoogle Scholar
Novak, R.J., Peloquin, J., and Rohrer, W. 1981. Vertical distribution of adult mosquitoes (Diptera: Culicidae) in a northern deciduous forest in Indiana. Journal of Medical Entomology, 18: 116122.CrossRefGoogle Scholar
Petersen, L.P., and Roehrig, J.T. 2001. West Nile virus: a reemerging global pathogen. Emerging Infectious Diseases, 7: 611614. PMID:11585520 doi:10.3201/eid0704.010401.CrossRefGoogle ScholarPubMed
Ritchie, S.A., and Rowley, W.A. 1981. Bloodfeeding patterns of Iowa mosquitoes. Mosquito News, 41: 271275.Google Scholar
Russell, C.B., and Hunter, F.F. 2005. Attraction of Culex pipiens/restuans (Diptera: Culicidae) mosquitoes to bird uropygial odors at two elevations in the Niagara Region of Ontario. Journal of Medical Entomology, 42: 301305. PMID: 15962778 doi:10.1603/0022-2585(2005)042[0301:AOCRDC]2.0.CO;2.CrossRefGoogle ScholarPubMed
Systat Software Inc. 2005. SigmaStat [computer program]. Systat Software Inc., San José, California.Google Scholar
Tempelis, C.H., Francy, D.B., Hayes, R.O., and Lofy, M.F. 1967. Variations in feeding patterns of seven culicine mosquitoes on vertebrate hosts in Weld and Larimer counties, Colorado. American Journal of Tropical Medicine and Hygiene, 16: 111119. PMID:4381479.CrossRefGoogle ScholarPubMed
Wood, D.M., Dang, P.T., and Ellis, R.A. 1979. The insects and arachnids of Canada. Part 6. The mosquitoes of Canada (Diptera: Culicidae). Publication 1686, Agriculture Canada, Ottawa, Ontario.Google Scholar