Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T05:22:33.271Z Has data issue: false hasContentIssue false

INFLUENCE OF APPLE CULTIVAR, TREE PHENOLOGY, AND LEAF QUALITY ON THE DEVELOPMENT AND MORTALITY OF CHORISTONEURA ROSACEANA (LEPIDOPTERA: TORTRICIDAE)

Published online by Cambridge University Press:  31 May 2012

David W. Onstad
Affiliation:
Department of Entomology, New York State Agricultural Experiment Station, Cornell University, Geneva, New York, USA 14456
W. Harvey Reissig
Affiliation:
Department of Entomology, New York State Agricultural Experiment Station, Cornell University, Geneva, New York, USA 14456
Christine A. Shoemaker
Affiliation:
Department of Environmental Engineering, Cornell University, Ithaca, New York, USA

Abstract

The obliquebanded leafroller, Choristoneura rosaceana (Harris), is a polyphagous insect that is occasionally a serious pest of apple trees. To determine how well adapted it is to this host plant, we studied its nutritional ecology by measuring the development and mortality of larvae and pupae reared on different sets of leaves. We investigated the influence of 3 apple cultivars, 2 time periods (June, July–August), and several leaf types, including those with different ages and different branch positions, on these processes. Larvae and pupae developed more rapidly with lower mortality on younger leaves than on older ones. When larvae were fed leaves collected from the same cultivar and branch position at different times during the season, developmental rates were faster and survival rates were higher earlier in the season. Development and survival were similar on leaves of all cultivars.

Résumé

La tordeuse à bandes obliques, Choristoneura rosaceana (Harris), est un insecte polyphage qui est occasionnellement très nuisible dans les pommeraies. Afin d’établir jusqu’à quel point il est bien adapté au pommier, on a étudié son écologie nutritionnelle en mesurant le développement et la mortalité des larves et des pupes obtenues avec différents feuillages. On a étudié les effets, sur ces processus, de 3 cultivars du pommier, 2 périodes de l’été (Juin et Juillet–Août) et plusieurs types de feuilles, y compris des feuilles d’âges différents et occupant des positions différentes sur les branches. Les larves et les pupes se sont développées plus rapidement et avec un meilleur taux de survie sur du feuillage jeune plutôt qu’âgé. Lorsque les larves ont été nourries de feuillage cueilli tôt en saison, les vitesses de développement et taux de survie ont été supérieurs à ceux obtenus avec du feuillage cueilli plus tard. Le développement et la survie se sont avérés similaires sur le feuillage des différents cultivars.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chapman, P.J., and Lienk, S.E.. 1971. Tortricid fauna of apple in New York. N.Y. State Agric. Expt. Stn., Geneva, N.Y. Spec. Publ. 122 pp.Google Scholar
Chapman, P.J., Lienk, S.E., and Dean, R.W.. 1968. Bionomics of Choristoneura rosaceana. Ann. ent. Soc. Am. 61: 285290.CrossRefGoogle Scholar
Draper, N.R., and Smith, H.. 1981. Applied regression analysis, 2nd ed. John Wiley and Sons, New York. 709 pp.Google Scholar
Dumbleton, L.J. 1939. Contribution to the physical ecology of Tortrix postvittana, Walk. (Lep.). Bull. Ent. Res. 39: 309319.CrossRefGoogle Scholar
Fluckiger, C.R., and Benz, G.. 1982. A temperature-driven model to simulate the population development of the summerfruit tortrix, Adoxophyes orana. Ent. Expt. Appl. 32: 161172.CrossRefGoogle Scholar
Gangavalli, R.R., and AliNiazee, M.T.. 1985. Temperature requirements for development of the obliquebanded leafroller, Choristoneura rosaceana (Lepidoptera: Tortricidae). Environ. Ent. 14: 1719.CrossRefGoogle Scholar
Hough, J.A., and Pimentel, D.. 1978. Influence of host foliage on development, survival, and fecundity of the gypsy moth. Environ. Ent. 7: 97102.CrossRefGoogle Scholar
Kruskal, W.H., and Wallis, W.A.. 1952. Use of ranks in one-criterion analysis of variance. J. Am. Stat. Assoc. 47: 583621.CrossRefGoogle Scholar
Mason, R.R., and Baxter, J. W.. 1970. Food preference in a natural population of the Douglas-fir tussock moth. J. econ. Ent. 63: 12571259.CrossRefGoogle Scholar
Onstad, D.W. 1985. Options for design and control in the management of a tortricid leafroller (Choristoneura rosaceana) in apple orchards. Ph.D. thesis, Cornell University, Ithaca, N.Y.Google Scholar
Raupp, M.J., and Denno, R.F.. 1983. Leaf age as a predictor of herbivore distribution and abundance. pp. 91–124 in Denno, R.F., and McClure, M.S. (Eds.), Variable Plants and Herbivores in Natural and Managed Systems. Academic Press, New York. 717 pp.Google Scholar
Reissig, W.H. 1978. Biology and control of the obliquebanded leafroller on apples. J. econ. Ent. 71: 804809.CrossRefGoogle Scholar
Scriber, J.M. 1977. Limiting effect of low leaf-water content on the nitrogen utilization, energy budget, and larval growth of Hyalophora cecropia (Lepidoptera: Saturniidae). Oecologia 28: 269287.CrossRefGoogle ScholarPubMed
Scriber, J.M. 1984. Host-plant suitability. pp. 159–204 in Bell, W.J., and Carde, R.T. (Eds.), Chemical Ecology of Insects. Chapman and Hall, London. 524 pp.Google Scholar
Scriber, J.M., and Slansky, F Jr., 1981. The nutritional ecology of immature insects. Annu. Rev. Ent. 26: 183211.CrossRefGoogle Scholar