Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T00:29:57.895Z Has data issue: false hasContentIssue false

Identification of morphologically challenging Delia (Diptera: Anthomyiidae) species from field vegetable crops using polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP)

Published online by Cambridge University Press:  02 June 2021

Julia J. Mlynarek*
Affiliation:
Montreal Insectarium, 4581 Sherbrooke Street East, Montréal, Québec, H1X 2B2, Canada Agriculture and Agri-Food Canada, Harrow Research and Development Centre, 2585 County Road 20, Harrow, Ontario, N0R 1G0, Canada
Kathrin A. Sim
Affiliation:
Agriculture and Agri-Food Canada, Harrow Research and Development Centre, 2585 County Road 20, Harrow, Ontario, N0R 1G0, Canada
*
*Corresponding author. Email: [email protected]

Abstract

Root feeding by the larvae of multiple Delia species can lead to economic loss in many agricultural crops. Field vegetables are subject to infestations by a species complex composed of Delia radicum (Linnaeus) (Diptera: Anthomyiidae), a pest in brassica crops (Brassicaceae), Delia antiqua (Meigen), believed to cause the majority of crop damage in onions, and the generalists Delia florilega (Zetterstedt), Delia platura (Meigen), and Botanophila fugax (Meigen) (Diptera: Anthomyiidae). Correct species identification is necessary to implement field management strategies, but these species are challenging to identify morphologically. We propose a polymerase chain reaction–restriction fragment length polymorphism method as a molecular tool to distinguish between five species of Delia and between two genetic lines of D. platura. The mitochondrial DNA cytochrome c oxidase subunit 1 barcode fragment is targeted, then the polymerase chain reaction product digested with four different restriction enzymes (AccI, BsrI, MlyI, and StyI). The BsrI enzyme distinguishes the two genetic lines of D. platura and D. florilega. The MlyI enzyme identifies B. fugax from the Delia species. Combining BsrI, StyI, AccI, and MlyI into double digestion reactions allows for rapid diagnostics among the species tested. Our method was validated using DNA from specimens collected in eastern Canada. This method provides tools in ecological and environmental studies where these species are of interest.

Type
Research Papers
Copyright
© The Author(s) and her Majesty, the Queen, in right of Canada, as represented by the Minister of Agriculture and Agri-Food Canada, 2021. Published by Cambridge University Press on behalf of the Entomological Society of Canada

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Hervé Colinet

References

Armstrong, K., Cameron, C., and Frampton, E. 1997. Fruit fly (Diptera: Tephritidae) species identification: a rapid molecular diagnostic technique for quarantine application. Bulletin of Entomological Research, 87: 111118.CrossRefGoogle Scholar
Arneodo, J.D., Balbi, E.I., Flores, F.M., and Sciocco-Cap, A. 2015. Molecular identification of Helicoverpa armigera (Lepidoptera: Noctuidae: Heliothinae) in Argentina and development of a novel PCR–RFLP method for its rapid differentiation from H. zea and H. gelotopoeon . Journal of Economic Entomology, 108: 25052510.CrossRefGoogle Scholar
Brunner, P., Fleming, C., and Frey, J. 2002. A molecular identification key for economically important thrips species (Thysanoptera: Thripidae) using direct sequencing and a PCR–RFLP-based approach. Agricultural and Forest Entomology, 4: 127136.CrossRefGoogle Scholar
Darvas, B. and Szappanos, A. 2003. Male and female morphology of some central European Delia (Anthomyiidae) pests. Acta Zoologica Academiae Scientiarum Hungaricae, 49: 8101.Google Scholar
Finch, S. 1989. Ecological considerations in the management of Delia pest species in vegetable crops. Annual Review of Entomology, 34: 117137.CrossRefGoogle Scholar
Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3: 294299.Google ScholarPubMed
Griffiths, G. 1991. Flies of the Nearctic region. Volume VIII, Part 2, Number 7. Cyclorrhapha II (Schizophora: Calyptrate) Anthomyiidae. E Schweizerbart’sche veragbuchhandlung (Nagele u. Obermiller, Stuttgart).Google Scholar
Griffiths, G. 1993. Flies of the Nearctic region. Cyclorrhapha II (Schizophora: Calyptratae) Anthomyiidae, Volume III, Part 2, Number 11. Schweizerbartsche Verlagsbuchhandlung, Stuttgart.Google Scholar
Hebert, P.D.N., Ratnasingham, S., Zakharov, E.V., Telfer, A.C., Levesque-Beaudin, V., Milton, V.A., et al. 2016. Counting animal species with DNA barcodes: Canadian insects. Philosophical Transactions of the Royal Society B: Biological Sciences, 371: 20150333.CrossRefGoogle ScholarPubMed
Howard, R.J., Garland, J.A., Seaman, W.L., and Grafius, E.J. 1996. Diseases and pests of vegetable crops in Canada. Journal of Economic Entomology, 89: 10451045.Google Scholar
Hoy, M.A. 2013. Insect molecular genetics: an introduction to principles and applications. Academic Press, Elsevier, San Diego, California, United States of America.CrossRefGoogle Scholar
Hua, H.Q., Zhao, Z.Y., Zhang, Y., Hu, J., Zhang, F., and Li, Y.X. 2018. Inter- and intra-specific differentiation of Trichogramma (Hymenoptera: Trichogrammatidae) species using PCR–RFLP targeting CO1 . Journal of Economic Entomology, 111: 18601867.CrossRefGoogle Scholar
Kim, S.S., Tripodi, A.D., Johnson, D.T., and Szalanski, A.L. 2014. Molecular diagnostics of Drosophila suzukii (Diptera: Drosophilidae) using PCR-RFLP. Journal of Economic Entomology, 107: 12921294.CrossRefGoogle ScholarPubMed
Lewter, J.A. and Szalanski, A.L. 2007. Molecular identification of the fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) using PCR-RFLP. Journal of Agricultural and Urban Entomology, 24: 5157.CrossRefGoogle Scholar
Mlynarek, J.J., MacDonald, M., Sim, K., Hiltz, K., McDonald, M.R., and Blatt, S. 2020. Oviposition, feeding preferences and distribution of Delia species (Diptera: Anthomyiidae) in eastern Canadian onions. Insects, 11: 780.CrossRefGoogle ScholarPubMed
Muraji, M. and Nakahara, S. 2002. Discrimination among pest species of Bactrocera (Diptera: Tephritidae) based on PCR-RFLP of the mitochondrial DNA. Applied Entomology and Zoology, 37: 437446.CrossRefGoogle Scholar
Ratcliffe, S.T., Webb, D.W., Weinzievl, R., and Robertson, H.M. 2003. PCR-RFLP identification of Diptera (Calliphoridae, Muscidae and Sarcophagidae): a generally applicable method. Journal of Forensic Sciences, 48: 783785.CrossRefGoogle ScholarPubMed
Savage, J., Fortier, A.M., Fournier, F., and Bellavance, V. 2016. Identification of Delia pest species (Diptera: Anthomyiidae) in cultivated crucifers and other vegetable crops in Canada. Canadian Journal of Arthropod Identification, 29: 140.Google Scholar
Smith, M.A., Bertrand, C., Crosby, K., Eveleigh, E.S., Fernandez-Triana, J., Fisher, B.L., et al. 2012. Wolbachia and DNA barcoding insects: patterns, potential, and problems. PLOS One, 7: e36514.CrossRefGoogle ScholarPubMed
Van der Heyden, H., Fortier, A.M., and Savage, J. 2020. A HRM assay for rapid identification of members of the seedcorn maggot complex (Delia florilega and D. platura) (Diptera: Anthomyiidae) and evidence of variation in temporal patterns of larval occurrence. Journal of Economic Entomology, 113: 29202930.CrossRefGoogle Scholar
Supplementary material: File

Mlynarek and Sim supplementary material

Mlynarek and Sim supplementary material

Download Mlynarek and Sim supplementary material(File)
File 12.4 KB