Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T11:25:19.408Z Has data issue: false hasContentIssue false

HOST EFFECTS ON ALLOZYME AND MORPHOLOGICAL VARIATION OF THE MOUNTAIN PINE BEETLE, DENDROCTONUS PONDEROSAE HOPKINS (COLEOPTERA: SCOLYTIDAE)

Published online by Cambridge University Press:  31 May 2012

David W. Langor
Affiliation:
Department of Entomology, University of Alberta, Edmonton, Alberta, Canada T6G 2E3
John R. Spence
Affiliation:
Department of Entomology, University of Alberta, Edmonton, Alberta, Canada T6G 2E3

Abstract

Allozyme and morphological variation were investigated for mountain pine beetle populations in limber pine and lodgepole pine in Alberta and British Columbia. Fourteen gene loci, five of which were polymorphic, were studied. Heterozygote deficiencies were detected at the ME locus for 13 of the 16 groups of beetles sampled. Selection against heterozygotes appears to be the most plausible explanation. There was no significant difference in heterozygosity between beetles from lodgepole pine and those from limber pine. Relatively high levels of genetic differentiation, in terms of allele frequency, were observed among beetles from different sites, host species, seasons, and individual conspecific trees within a site. Low levels of differentiation were observed between beetle generations at a site and between sexes. We attribute significant host-associated genetic differentiation to differential survival in hosts rather than to differential host preference of beetle genotypes. Standardized discriminant function analysis of 12 morphological characters indicated significant differences in beetle shape between sexes, host species, and among sites. Overall, there was little evidence of preferential host selection by beetles which would imply substructuring of Dendroctonus ponderosae Hopkins populations along host lines.

Résumé

La variabilité morphologique et en allozyme a été étudiée par rapport aux populations du dendoctrone du pin ponderosa dans le pin limbique et le pin tordu de l’Alberta et de la Colombie Britannique. Quatorze loci génétiques, dont cinq polymorphiques, ont été examinés. Des déficiences hétérozygotiques ont été constatées au locus ME en ce qui concerne 13 des 16 groupes échantillonnés de dendoctrones. L’anti-sélection pour les hétérozygotes semble l’explication la plus plausible. Aucune différence significative en ce qui concerne l’hétérozygosité entre les dendoctrones du pin tordu et ceux du pin limbique a été signalée. Des niveaux de différences génétiques assez élevés, par rapport à la fréquence d’allèles, ont été constatés parmi les dendoctrones en provenance des sites différentes, des espèces différentes de l’hôte, des saisons différentes, et des arbres conspécifiques d’un site. Des niveaux bas de différences ont été signalés entre les générations et les sexes des dendoctrones d’un site. Nous prétendons que les différences génétiques significatives soient associées à une différence dans la survie reliée à l’hôte, au lieu qu’aux préférences différentes de l’hôte par les génotypes de dendoctrones. L’analyse fonctionnelle discriminante normalisée de 12 caractéristiques morphologiques a indiqué des différences en forme des dendoctrones par rapport au sexe, à l’espèce d’hôte et au site. En générale, peu d’évidence a été vue d’une sélection préférentielle par les dendoctrones, qui suggère la sous-strucluration des populations de D. ponderosae Hopkins suivant les lignées des hôtes.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberta, Forestry, Lands and Wildlife. 1986. Mountain pine beetle control program 1980–86: A success story. Publ. No. I/143, Alberta Forestry Lands and Wildlife, Edmonton, Alta. 12 pp.Google Scholar
Amman, G.D., and Cole, W.E.. 1983. Mountain pine beetle dynamics in lodgepole pine forests part II: Population dynamics. U.S.D.A., For. Serv., Intermountain For. Range Exp. Stn., Gen. Tech. Rep. INT-145. Ogden, UT. 59 pp.Google Scholar
Amman, G.D., Lessard, G.D., Rasumssen, L.A., and O'Neil, C.G.. 1988. Lodgepole pine vigor, regeneration, and infestation by mountain pine beetle following partial cutting on the Shoshone National Forest, Wyoming. U.S.D.A., For. Serv., Intermountain For. Range Exp. Stn., Res. Paper INT-396. Ogden, UT. 8 pp.Google Scholar
Anderson, W.W., Berisford, C.W., and Kimmich, R.H.. 1979. Genetic differences among five populations of the southern pine beetle. Ann. ent. Soc. Am. 72: 323327.CrossRefGoogle Scholar
Cates, R.G., and Alexander, H.. 1982. Host resistance and susceptibility. pp. 212263in Mitton, J.B., and Sturgeon, K.B. (Eds.), Bark Beetles in North American Conifers: A System for the Study of Evolutionary Biology. University of Texas Press, Austin, TX.Google Scholar
Conkle, M.T., Hodgekiss, P.D., Nunnally, L.B., and Hunter, S.C.. 1982. Starch gel electrophoresis of conifer seeds: A laboratory manual. U.S.D.A., For. Serv., Pacific Southwest For. Range Exp. Stn., Gen. Tech. Rep. PSW-64. Berkeley, CA. 18 pp.Google Scholar
Diehl, S.R., and Bush, G.L.. 1984. An evolutionary and applied perspective of insect biotypes. A. Rev. Ent. 29: 471504.CrossRefGoogle Scholar
Diehl, S.R., and Bush, G.L.. 1989. The role of habitat preference in adaptation and speciation. pp. 345365in Otte, D., and Endler, J.A. (Eds.), Speciation and its Consequences. Sinauer, Sunderland, MA.Google Scholar
Edmunds, G.F., and Alstad, D.N.. 1978. Coevolution in insect herbivores and conifers. Science 199: 941945.CrossRefGoogle ScholarPubMed
Futuyma, D.J., and Peterson, S.C.. 1985. Genetic variation in the use of resources by insects. A. Rev. Ent. 29: 471504.Google Scholar
Gillespie, J.H., and Kojima, K.I.. 1968. The degree of polymorphism in enzymes involved in energy production compared to that in non-specific enzymes in two Drosophila ananassae populations. P.N.A.S. 61: 582585.Google Scholar
Guttman, S.I., Wood, T.K., and Karlin, A.A.. 1981. Genetic differentiation along host plant lines in the sympatric Echenopa binotata Say complex (Homoptera: Membracidae). Evolution 35: 205217.CrossRefGoogle ScholarPubMed
Harris, H., and Hopkinson, D.A.. 1976. Handbook of Enzyme Electrophoresis in Human Genetics. Oxford American Elsevier Publ. Co., New York, NY.Google Scholar
Hedrick, P.W., Ginevan, M.E., and Ewing, E.P.. 1976. Genetic polymorphism in heterogenous environments. A. Rev. Ecol. Syst. 7: 132.Google Scholar
Higby, P.K., and Stock, M.W.. 1982. Genetic relationships between two sibling species of bark beetles (Coleoptera: Scolytidae), Jeffrey pine beetle and mountain pine beetle, in northern California. Ann. ent. Soc. Am. 75: 668674.Google Scholar
Hopkins, A.D. 1916. Economic investigations of the scolytid bark and timber beetles of North America. U.S.D.A. Program of Work 1917: 353.Google Scholar
Jaenike, J., and Selander, R.K.. 1980. On the question of host races in the fall webworm, Hyphantria cunea. Entomologia exp. appl. 27: 3137.Google Scholar
Krisch, K. 1971. Carboxylic ester hydrolases. pp. 4369in Boyer, P. (Ed.), The Enzymes, vol. 5. Academic Press, New York, NY.Google Scholar
Langor, D.W. 1989 a. Host effects on the population genetics and dynamics of the mountain pine beetle D. pnderosae Hopkins (Coleoptera: Scolytidae). Ph.D. thesis, University of Alberta, Edmonton, Alta.Google Scholar
Langor, D.W. 1989 b. Host effects on the phenology, development, and mortality of the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae). Can. Ent. 121: 149157.CrossRefGoogle Scholar
Langor, D.W., Spence, J.R., and Pohl, G.R.. 1990. Host effects on fertility and reproductive success of Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae). Evolution 44: 609618.Google Scholar
Lyon, R.L. 1958. A useful secondary sex character in Dendroctonus bark beetles. Can. Ent. 90: 582584.CrossRefGoogle Scholar
MacKay, T.F.C. 1981. Genetic variation in varying environments. Gen. Res. 37: 7993.Google Scholar
Mitter, C., and Futuyma, D.J.. 1979. Population genetic consequences of feeding habits in some forest Lepidoptera. Genetics 92: 10051021.Google Scholar
Namkoong, G., Roberds, J.H., Nunnally, L.B., and Thomas, A.A.. 1979. Isozyme variation in populations of southern pine beetles. For. Sci. 25: 197203.Google Scholar
Nei, M. 1972. Genetic distance between populations. Am. Nat. 106: 283292.CrossRefGoogle Scholar
Nevo, E. 1978. Genetic variation in natural populations: Patterns and theory. Theoret. Popul. Biol. 13: 121177.CrossRefGoogle ScholarPubMed
Nie, N.H., Hull, C.H., Jenkins, J.G., Steinbrenner, K., and Bent, D.H.. 1975. Statistical Package for the Social Sciences. McGraw-Hill, New York, NY. 806 pp.Google Scholar
Ridgeway, G.J., Sherburne, S.W., and Lewis, R.D.. 1970. Polymorphism in the esterases of Atlantic herring. Trans. Am. Fish. Soc. 99: 147151.Google Scholar
Safranyik, L., van Sickle, G.A., and Manning, G.H. (Compilers). 1981. Position paper on mountain pine beetle problems with special reference to the Rocky Mountain Parks Region. Canadian Forestry Service, Pacific Forestry Centre, Victoria, B.C. 27 pp.Google Scholar
Schaal, B.A., and Anderson, W.W.. 1974. An outline of techniques for starch gel electrophoresis of enzymes from the American oyster Crassostrea virginica Gmelin. Georgia Marine Sci. Cent., Tech. Rep. 74–3. 17 pp.Google Scholar
Shaw, C.R., and Prasad, R.. 1970. Starch gel electrophoresis of enzymes — a compilation of recipes. Biochem. Genet. 4: 297320.CrossRefGoogle ScholarPubMed
Siciliano, M.J., and Shaw, C.R.. 1976. Separation and visualization of enzymes on gels. pp. 185309in Smith, I. (Ed.), Chromatographic and Electrophoretic Techniques, vol. 2. Heimann Publ., London.Google Scholar
Smith, R.H. 1977. Monoterpenes of ponderosa pine xylem resin in the western United States. U.S.D.A., For. Serv., Tech. Bull. 1532. Washington, DC. 48 pp.Google Scholar
Squillace, A.E. 1976. Analyses of monoterpenes of conifers by gas-liquid chromatography. pp. 120139in Miksche, J.P. (Ed.), Modem Methods in Forest Genetics. Springer-Verlag, New York, NY.Google Scholar
Stock, M.W., and Amman, G.D.. 1980. Genetic differentiation among mountain pine beetle populations from lodgepole pine and ponderosa pine in northeast Utah. Ann. ent. Soc. Am. 72: 472478.CrossRefGoogle Scholar
Stock, M.W., and Amman, G.D.. 1985. Host effects on the genetic structure of mountain pine beetle, Dendroctonus ponderosae, populations. pp. 8395in Safranyik, L. (Ed.). The Role of the Host in the Population Dynamics of Forest Insects. Proc. IUFRO Conference, Banff, Alberta, 4–7 September 1983.Google Scholar
Stock, M.W., Amman, G.D., and Higby, P.K.. 1984. Genetic variation among mountain pine beetle (Dendroctonus ponderosae) (Coleoptera: Scolytidae) populations from seven western states. Ann. ent. Soc. Am. 77: 760764.Google Scholar
Stock, M.W., and Guenther, J.D.. 1979. Isozyme variation among mountain pine beetle (Dendroctonus ponderosae) populations in the Pacific Northwest. Environ. Ent. 8: 889893.Google Scholar
Stock, M.W., Guenther, J.D., and Pitman, G.B.. 1978. Implications of genetic differences between mountain pine beetle populations to integrated pest management. pp. 197201in Berryman, A.A., Amman, G.D., and Stark, R.W. (Eds.), Theory and Practice of Mountain Pine Beetle Management in Lodgepole Pine Forests. University of Idaho Press, Moscow, ID.Google Scholar
Stock, M.W., Pitman, G.B., and Guenther, J.D.. 1979. Genetic differences between Douglas-fir beetles (Dendroctonus pseudotsugae) from Idaho and coastal Oregon. Ann. ent. Soc. Am. 72: 394397.Google Scholar
Stuart, J.D. 1984. Hazard rating of lodgepole pine stands to mountain pine beetle outbreaks in southcentral Oregon. Can. J. For. Res. 14: 666671.CrossRefGoogle Scholar
Sturgeon, K.B. 1980. Evolutionary interactions between the mountain pine beetle, Dendroctonus ponderosae Hopkins, and its host trees in the Colorado Rocky Mountains. Ph.D. thesis, University of Colorado, Boulder, CO. 160 pp.Google Scholar
Sturgeon, K.B., and Mitton, J.B.. 1986 a. Allozyme and morphological differentiation of mountain pine beetles, Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae), associated with host tree. Evolution 40: 290302.Google Scholar
Sturgeon, K.B., and Mitton, J.B.. 1986 b. Biochemical diversity of ponderosa pine and predation by bark beetles (Coleoptera: Scolytidae). J. econ. Ent. 79: 10641068.CrossRefGoogle Scholar
Swofford, D.L., and Selander, R.B.. 1981. BIOSYS-1, a computer program for the analysis of allelic variation in genetics. User's Manual. Department of Genetics and Development, University of Illinois, Urbana-Champaign, IL.Google Scholar
Via, S., and Lande, R.. 1985. Genotype-environment interaction and the evolution of phenotype plasticity. Evolution 39: 505522.Google Scholar
Wood, D.L. 1963. Studies on host selection by Ips confusus (Leconte) (Coleoptera: Scolytidae) with special reference to Hopkins’ host selection principle. Univ. Calif. Publ. Ent. 27: 241282.Google Scholar
Wright, S. 1932. The roles of mutation, inbreeding, crossbreeding, and selection in evolution. Proc. XI Int. Cong. Genet. 1: 356366.Google Scholar
Yeh, F.C.H., and O'Malley, D.. 1980. Enzyme variation in natural populations of Douglas-fir, Pseudotsuga menziesii (Mirb.) Franco, from British Columbia. I. Genetic variation patterns in coastal populations. Silvae Genet. 29: 8392.Google Scholar