Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T05:14:38.308Z Has data issue: false hasContentIssue false

GROWTH RESPONSES OF SCOTS PINE (PINACEAE) TO ARTIFICIAL AND SAWFLY (HYMENOPTERA: DIPRIONIDAE) DEFOLIATION

Published online by Cambridge University Press:  31 May 2012

Päivi Lyytikäinen-Saarenmaa
Affiliation:
Finnish Forest Research Institute, Vantaa Research Centre, PO Box 18, FIN-01301 Vantaa, Finland

Abstract

The influence of defoliation type (artificial versus natural), timing (early versus late), and intensity (25%, 50%, and 75% of needle mass removed) on leader growth of Scots pine, Pinus sylvestris (Linnaeus), was assessed for 2 years after treatment on an even-aged stand located in southeastern Finland. Trees were defoliated simultaneously, either artificially with a pair of scissors or naturally with larvae of Neodiprion sertifer (Geoffroy) and Diprion pini (Linnaeus) for the early- and late-season treatments, respectively. After 1 year, early-season artificial defoliation generally caused greater growth reduction than natural defoliation. Late-season defoliation yielded opposite results. Trees defoliated artificially in early-season treatments were significantly shorter than control trees irrespective of defoliation intensity, whereas those defoliated late in the season did not differ from controls, except at the highest intensity. Trees defoliated by sawflies, either early or late in the season, were significantly shorter than control trees only at the highest defoliation intensity. The pattern of growth loss in the second year appeared similar to that in the first year. The impact of defoliation was either prolonged neutral or negative, as no compensatory responses on height growth in Scots pine were observed. Timing of the treatment in relation to completion of leader growth, differences in defoliation types, alteration of the photosynthetic capacity due to biomass loss, and the functional role of plant parts defoliated may explain the results observed.

Résumé

L’influence du type de défoliation (artificielle ou naturelle), du moment de la défoliation (hâtive ou tardive) et de son intensité (25%, 50%, ou 75% de la masse des aiguilles disparue) sur la croissance des jeunes pousses de pin sylvestre, Pinus sylvestris (Linnée), a été étudiée durant 2 ans dans une forêt d’âge uniforme dans le sud-est de la Finlande. Les arbres ont été défoliés simultanément au moyen d’une paire de ciseaux, ou alors naturellement par des larves de Neodiprion sertifer (Geoffroy) en début de saison et par des larves de Diprion pini (Linnée) (Hymenoptera : Diprionidae) en fin de saison. L’observation après 1 an a révélé que la défoliation artificielle de début de saison entraînait généralement une plus grande réduction de la croissance des bourgeons terminaux que la défoliation naturelle. Inversement, la défoliation de fin de saison donnait les résultats opposés. Les pins soumis à une défoliation artificielle de début de saison étaient généralement plus courts que les pins témoins, indépendamment de l’intensité de leur défoliation, alors que les pins défoliés en fin de saison ne différaient pas des arbres témoins, sauf à la plus haute intensité de défoliation. Les arbres défoliés par les mouches-à-scie, tôt ou tard en saison, étaient significativement plus courts que les pins témoins seulement aux taux les plus élevés de défoliation. La croissance au cours de la seconde année paraît semblable à celle observée au cours de la première année. L’impact de la défoliation a été prolongé, neutre ou négatif, puisqu’aucune réaction de compensation n’a été observée dans la croissance en hauteur des pins étudiés. Le moment du traitement par rapport au stade de croissance des bourgeons terminaux, les différences entre les types de défoliation, la modification de la capacité de photosynthèse par perte de biomasse et le rôle fonctionnel des parties défoliées des arbres peuvent expliquer les résultats obtenus.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Austarå, Ø, Orlund, A., Svendsrud, A., Weidahl, A. 1987. Growth loss and economic consequences following two year defoliation of Pinus sylvestris by the pine sawfly Neodiprion sertifer in West-Norway. Scandinavian Journal of Forest Research 2: 111–19CrossRefGoogle Scholar
Baldwin, I.T. 1990. Herbivory simulations in ecological research. Trends in Ecology & Evolution 3: 9193CrossRefGoogle Scholar
Bergelson, J., Juenger, T., Crawley, M.J. 1996. Regrowth following herbivory in Ipomopsis aggregata: compensation but not overcompensation. American Naturalist 148: 744–55CrossRefGoogle Scholar
BMDP. 1988. Statistical software. Vol. 1. Berkeley, Calif.: University of California PressGoogle Scholar
Britton, R.J. 1988. Physiological effects of natural and artificial defoliation on the growth of young groups of lodgepole pine. Forestry 61: 165–75CrossRefGoogle Scholar
Bryant, J.P., Chapin, F.S. III, Klein, D.R. 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40: 357–68CrossRefGoogle Scholar
Cajander, A.K. 1949. Forest types and their significance. Acta Forestalia Fennica 56: 169CrossRefGoogle Scholar
Carroll, A.L., Lawlor, M.F., Quiring, D.T. 1993. Influence of feeding by Zeiraphera canadensis, the spruce bud moth, on stem-wood growth of young white spruce. Forest Ecology and Management 58: 4149CrossRefGoogle Scholar
Day, K.R., Leather, S.R., Lines, R. 1991. Damage by Zeiraphera diniana (Lepidoptera: Tortricidae) to lodgepole pine (Pinus contorta) of various provenances. Forest Ecology and Management 44: 133–45CrossRefGoogle Scholar
Ericsson, A., Hellkvist, K., Hillerdal-Hagströmer, K., Larsson, S., Mattson-Djos, E., Tenow, O. 1980 a. Consumption and pine growth-hypothesis on effects on growth processes by needle-eating insects. pp. 537–45 in Persson, T. (Ed.), Structure and function of northern coniferous forests — an ecosystem study. Ecological Bulletins 32Google Scholar
Ericsson, A., Larsson, S., Tenow, O. 1980 b. Effects of early and late season defoliation on growth and carbohydrate dynamics in Scots pine. Journal of Applied Ecology 17: 747–69CrossRefGoogle Scholar
Haukioja, E. 1990. Induction of defenses in trees. Annual Review of Entomology 36: 2542CrossRefGoogle Scholar
Honkanen, T., Haukioja, E., Suomela, J. 1994. Effects of simulated defoliation and debudding on needle and shoot growth in Scots pine (Pinus sylvestris): implications of plant source/sink relationships for plant-herbivore studies. Functional Ecology 8: 631–39CrossRefGoogle Scholar
Karban, R., Courtney, S. 1987. Intraspecific host plant choice: lack of consequences for Streptanthus tortosus (Cruciferae) and Euchloe hyantis (Lepidoptera: Pieridae). Oikos 48: 243–48CrossRefGoogle Scholar
Kozlowski, T.T., Pallardy, S.G. 1996. Physiology of woody plants. 2nd ed. San Diego: Academic Press Inc.Google Scholar
Kulman, H.M. 1965. Effects of artificial defoliation of pine on subsequent shoot and needle growth. Forest Science 11: 9098Google Scholar
Kulman, H.M. 1971. Effects of insect defoliation on growth and mortality of trees. Annual Review of Entomology 16: 289324CrossRefGoogle Scholar
Little, C.H.A. 1970. Apical dominance in long shoots of white pine (Pinus strobus). Canadian Journal of Botany 48: 239–53CrossRefGoogle Scholar
Lyytikäinen, P. 1994. Effects of natural and artificial defoliations on sawfly performance and foliar chemistry of Scots pine saplings. Annales Zoologici Fennici 31: 307–18Google Scholar
Maschinski, J., Whitham, T.G. 1989. The continuum of plant responses to herbivory: the influence of plant association, nutrient availability, and timing. American Naturalist 134: 119CrossRefGoogle Scholar
Mattson, W.J., Addy, N.D. 1975. Phytophagous insects as regulators of forest primary production. Science (Washington, DC) 190: 515–21CrossRefGoogle Scholar
McNaughton, S.J. 1983. Compensatory plant growth as a response to herbivory. Oikos 40: 329–36CrossRefGoogle Scholar
Miller, K.K., Wagner, M.R. 1989. Effect of pandora moth (Lepidoptera: Saturniidae) defoliation on growth of ponderosa pine in Arizona. Journal of Economic Entomology 82: 1682–86CrossRefGoogle Scholar
Osman, K.A., Sharrow, S.H. 1993. Growth responses of Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) to defoliation. Forest Ecology and Management 60: 105–17CrossRefGoogle Scholar
Paige, K.N., Whitham, T.G. 1987. Overcompensation in response to mammalian herbivory: the advantage of being eaten. American Naturalist 129: 407–16CrossRefGoogle Scholar
Piene, H. 1980. Effect of insect defoliation on growth and foliar nutrients of young balsam fir. Forest Science 4: 665–73Google Scholar
Piene, H., Little, C.H.A. 1990. Spruce budworm defoliation and growth loss in young balsam fir: artificial defoliation of potted trees. Canadian Journal of Forest Research 20: 902909CrossRefGoogle Scholar
Piene, H., Percy, K.E. 1984. Changes in needle morphology, anatomy, and mineral content during the recovery of protected balsam fir trees initially defoliated by the spruce budworm. Canadian Journal of Forest Research 14: 238–45CrossRefGoogle Scholar
Sanchez-Martinez, G., Wagner, M.R. 1994. Sawfly (Hymenoptera: Diprionidae) and artificial defoliation affects above- and below-ground growth of ponderosa pine seedlings. Journal of Economic Entomology 87: 1038–45CrossRefGoogle Scholar
Sokal, R.R., Rohlf, F.J. 1981. Biometry. 2nd ed. New York: Freeman and CompanyGoogle Scholar
Viitasaari, M., Varama, M. 1987. Sahapistiäiset 4. Havupistiäiset (Diprionidae). Summary: Sawflies 4. Conifer sawflies (Diprionidae). University of Helsinki, Department of Agricultural and Forest Zoology. Reports 10: 179. [In Finnish with English summary.]Google Scholar