Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T11:59:17.564Z Has data issue: false hasContentIssue false

GROWTH AND DEVELOPMENT OF COMPSILURA CONCINNATA (MEIGAN) (DIPTERA: TACHINIDAE) PARASITIZING GYPSY MOTH LARVAE FEEDING ON TANNIN DIETS

Published online by Cambridge University Press:  31 May 2012

R.S. Bourchier
Affiliation:
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Abstract

All larval instars of Compsilura concinnata (Meigan) (Diptera: Tachinidae) develop in the midgut of the gypsy moth [Lymantria dispar (L.) (Lepidoptera: Lymantriidae)] between the peritrophic membrane and gut wall. Parasitoid larvae placed artificially in the host haemocoel quickly moved to this characteristic position. There was a positive relationship between parasitoid size, as measured by the weight of the puparium, and the potential fecundity of female flies. When C. concinnata parasitized third-instar larval hosts, there were fewer successful multiple emergences, parasitoid larvae took longer to develop, and puparia were significantly smaller than those of parasitoids attacking fifth-instar hosts.

Gypsy moth larvae grew more slowly on diets supplemented with 0.5 and 2.5% tannic acid than on non-supplemented diets. Similarly, C. concinnata females were smaller (with associated reduction in fecundity) when emerging from hosts feeding on the tannin diets than when hosts were feeding on control diets. The effect of tannic acid on the parasitoid was indirect and was the result of a reduction in host quality on the tannin diets. Reduction in parasitoid fecundity associated with tritropic interactions (among the host plant, the gypsy moth, and the parasitoid) may provide a possible explanation for the irregular impact of C. concinnata on gypsy moth populations.

Résumé

Tous les stades larvaires de Compsilura concinnata (Meigan) (Diptera : Tachinidae) se développent dans l’intestin moyen de la Spongieuse [Lymantria dispar (L.) (Lepidoptera : Lymantriidae)], entre la membrane péritrophique et la paroi de l’intestin. Des larves du parasitoïde placées artificiellement dans l’hémocèle de leur hôte ont eu tôt fait de gagner le site caractéristique entre la paroi de l’intestin moyen et la membrane péritrophique. Il y a une corrélation positive entre la taille du parasitoïde, estimée en fonction de la masse du puparium, et la fécondité potentielle des mouches femelles. Lorsque les mouches parasitent des larves de troisième stade de spongieuses, il y a moins d’émergences multiples réussies, le développement des larves du parasitoïde est plus lent et les pupariums sont significativement plus petits que chez les mouches parasites de larves de spongieuses de cinquième stade.

Le développement des larves de spongieuses nourries de diètes additionnées de 0,5 ou 2,5% d’acide tannique est plus lent que celui des larves nourries de régimes témoins. De même, les femelles de C. concinnata sont plus petites et leur fécondité est réduite lorsqu’elles se développent sur des spongieuses nourries de diètes à tanins. L’effet de l’acide tannique sur le parasitoïde est indirect et il résulte d’une réduction de la qualité de l’hôte sous l’influence de l’acide tannique. La réduction de la fécondité du parasitoïde associée à des interactions à trois niveaux (plante hôte, spongieuse, parasite) explique probablement pourquoi l’impact de C. concinnata sur les populations de spongieuses est variable.

[Traduit par la rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnaud, P.H. 1978. A Host-Parasitoid Catalog of North American Tachinidae (Diptera). USDA Misc. Publ. 1319. 860 pp.Google Scholar
Barbosa, P., Capinera, J.L., and Harrington, E.A.. 1975. The gypsy moth parasitoid complex in western Massachusetts: A study of parasitoids in areas of low and high density. Environ. Ent. 4: 842846.CrossRefGoogle Scholar
Barbosa, P., and Krischik, V.A.. 1987. Influence of alkaloids on feeding preference of eastern deciduous forest trees by the gypsy moth, Lymantria dispar. Am. Nat. 130: 569.CrossRefGoogle Scholar
Barbosa, P., and Letourneau, D.K.. 1988. Novel Aspects of Insect–Plant Interactions. Wiley, New York, NY. 362 pp.Google Scholar
Bernays, E.A., Driver, G. Cooper, and Bilgener, M.. 1989. Herbivores and plant tannins. Adv. Ecol. Res. 19: 263302.CrossRefGoogle Scholar
Boethel, D.J., and Eikenbary, R.D.. 1986. Interactions of Plant Resistance and Parasitoids and Predators of Insects. Ellis Horwood, West Sussex. 222 pp.Google Scholar
Burgess, A.F., and Crossman, S.S.. 1929. Imported enemies of the gypsy moth and the brown-tail moth. USDA Tech. Bull. 86. 147 pp.Google Scholar
Draper, N.R., and Smith, H.. 1981. Applied Regression Analysis, 2nd ed. Wiley, New York, NY. 709 pp.Google Scholar
Feeny, P. 1976. Plant apparency and chemical defense. Rec. Adv. Phytochem. 10: 140.Google Scholar
Elkinton, J.S., and Liebhold, A.M.. 1990. Population dynamics of gypsy moth in North America. A. Rev. Ent. 35: 571596.CrossRefGoogle Scholar
Gould, J.R., Elkinton, J.S., and Wallner, W.E.. 1990. Density-dependent suppression of experimentally created gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae), populations by natural enemies. J. anim. Ecol. 59: 213233.CrossRefGoogle Scholar
Hagerman, A.E., and Butler, L.G.. 1978. Protein precipitation method for the quantitative determination of tannins. J. Agric. Food Chem. 26: 809812.CrossRefGoogle Scholar
Higashiura, Y. 1987. Larval densities and a life-table for the gypsy moth, Lymantria dispar, estimating using the head-capsule collection method. Ecol. Ent. 12: 2530.CrossRefGoogle Scholar
Karowe, D.N. 1989. Differential effect of tannic acid on two tree-feeding Lepidoptera: Implications for theories of plant anti-herbivore chemistry. Oecologia 80: 507512.CrossRefGoogle ScholarPubMed
Lance, D.R., Elkinton, J.S., and Schwalbe, C.P.. 1986. Feeding rhythms of gypsy moth larvae: Effect on food quality during outbreaks. Ecology 67: 16501654.CrossRefGoogle Scholar
Martin, J.S., and Martin, M.M.. 1982. Tannin assays in ecological studies: Lack of correlation between phenolics, proanthocyanidins and protein-precipitating constituents in nature foliage of six oak species. Oecologia 54: 205211.CrossRefGoogle Scholar
McDougall, C., Philogène, B.J.R., Arnason, J.T., and Donskov, N.. 1988. Comparative effects of two-plant secondary metabolites on host–parasitoid association. J. Chem. Ecol. 14: 12391252.CrossRefGoogle ScholarPubMed
ODell, T.M., Butt, C.A., and Bridgeforth, A.W.. 1985. Lymantria dispar. pp. 355–367 in Singh, P., and Moore, R.F. (Eds.), Handbook of Insect Rearing, Vol. 2. Elsevier, Amsterdam. 514 pp.Google Scholar
Orr, D.B., and Boethel, D.J.. 1986. Influence of plant antibiosis through four trophic levels. Oecologia 70: 242249.CrossRefGoogle ScholarPubMed
Rhoades, D.F., and Gates, R.G.. 1976. Toward a general theory of plant antiherbivore chemistry. Rec. Adv. Phytochem. 10: 168213.Google Scholar
Rossiter, M., Schultz, J.C., and Baldwin, I.T.. 1988. Relationships among defoliation, red oak phenolics and gypsy moth growth and reproduction. Ecology 69: 267277.CrossRefGoogle Scholar
Schultz, J.C., and Baldwin, I.T.. 1982. Oak leaf quality declines in response to defoliation by gypsy moth larvae. Science 217: 149151.CrossRefGoogle ScholarPubMed
Ticehurst, M., Fusco, R.A., Kling, R.P., and Unger, J.. 1978. Observations on parasites of gypsy moth in first cycle infestations in Pennsylvania from 1974–1977. Environ. Ent. 7: 355358.CrossRefGoogle Scholar
Vinson, S.B., and Barbosa, P.. 1987. Interrelationships of nutritional ecology of parasitoids. pp. 673–695 in Slansky, F. Jr, and Rodriguez, J.G. (Eds.), Nutritional Ecology of Insects, Mites, Spiders, and Related Invertebrates. Wiley, New York, NY. 1016 pp.Google Scholar
Wilkinson, L. 1989. SYSTAT: The System for Statistics. SYSTAT, Inc, Evanston, IL. 882 pp.Google Scholar