Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T11:01:44.468Z Has data issue: false hasContentIssue false

Genetic variation within and among populations of an arctic/alpine sweat bee (Hymenoptera: Halictidae)

Published online by Cambridge University Press:  31 May 2012

Laurence Packer*
Affiliation:
Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J IP3
John S. Taylor
Affiliation:
Department of Biology, University of Victoria, Victoria, British Columbia, Canada V8W 3N5
*
1 Corresponding author (e-mail: [email protected]).

Abstract

We present the results of electrophoretic analyses of allozymes for eight population samples of the arctic/alpine sweat bee, Lasioglossum (Evylaeus) boreale Svensson, Sakagami and Ebmer. This holarctic species is found at high latitudes and at increasingly high elevations in the mountains of western North America as far south as southern Arizona. Our samples encompass a large proportion of the species' range; three samples are from Arizona, one from Utah, two from northern Canada, one from Mount Washington (the highest point in the eastern United States), and one from Sweden. Most samples had high levels of genetic variation compared with other bees, but the one from Sweden had low heterozygosity, suggesting that this location may have been comparatively recently colonized. The three northern North American samples were genetically similar despite the large geographic distances separating the localities (average > 3000 km). In contrast, the southern United States samples were (with the exception of one pairwise estimate) genetically divergent despite the small geographic distances separating them (average < 500 km). These results are consistent with earlier divergence among the southern populations, which are currently separated by regions of low elevation and inhospitable desert, than among the more northern ones. Although the data are not conclusive, they are suggestive of northward dispersal from refugia south of the ice sheets since the last glaciation.

Résumé

Nous présentons ici les résulats d'analyses par électrophorèse des allozymes de huit populations de l'halicte arctique/alpin, Lasioglossum (Evylaeus) boreale Svensson, Sakagami et Ebmer. Cette espèce holarctique habite les latitudes élevées et on la retrouve de plus en plus en altitude dans les montagnes de l'ouest nord-américain jusque dans le sud de l'Arizona. Nos échantillons, trois d'Arizona, un d'Utah, deux du nord du Canada, un du Mont Washington (le point le plus élevé de l'est des États-Unis) et un de Suède, recouvrent une importante proportion de la répartition de l'espèce. Dans la plupart des échantillons, il y a une grande variation génétique par comparaison à d'autres abeilles, mais, dans l'échantillon de Suède, l'hétérozygotie est faible, ce qui semble indiquer que ce site n'a été colonisé que relativement récemment. Les trois échantillons provenant du nord de l'Amérique du Nord sont génétiquement semblables malgré les distances géographiques importantes entre les localités (en moyenne, plus de 3000 km). En revanche, il y a une divergence génétique entre les échantillons du sud des États-Unis (à l'exception d'un appariement) malgré les faibles distances géographiques entre les localités (en moyenne moins de 500 km). Ces résultats s'accordent avec l'hypothèse d'une divergence plus précoce entre les populations du sud qui sont séparées par des zones de faible altitude et par des déserts inhospitaliers qu'entre les populations du nord. Bien que ces résultats ne soient pas totalement concluants, ils indiquent que la dispersion s'est probablement faite vers le nord à partir de refuges situés au sud des glaces depuis la dernière glaciation.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armbruster, P., Bradshaw, W.E., Holzapfel, C.M. 1998. Effects of postglacial range expansion on allozyme and quantitative genetic variation of the pitcher-plant mosquito wyeomyia smithii. Evolution 52: 1697–704Google ScholarPubMed
Ashworth, A.C., Schwert, D.P., Reiss, R.A. 1996. Biogeography of arctic beetles: integrating the results of paleontological and molecular population genetic studies. Arctic Insect News 7: 12–5Google Scholar
Avise, J.A. 2000. Cladists in wonderland. Evolution 54: 1828–32Google Scholar
Clarke, T.E., Levin, D.B., Kavanaugh, D.H., Reimchen, T.E. 2001. Rapid evolution in the Nebria gregaria Group (Coleoptera: Carabidae) and the Paleogeography of the Queen Charlotte Islands. Evolution 55: 1408–18Google ScholarPubMed
Davis, J.I., Nixon, K.C. 1992. Populations, genetic variation, and the delimitation of phylogenetic species. Systematic Biology 41: 421–35CrossRefGoogle Scholar
Gill, G.B., Nostrom, A.M., Mack, A.L. 1993. Speciation in North American chickadees: I Patterns of mtDNA genetic divergence. Evolution 47: 195212Google ScholarPubMed
Hayes, J.D., Harrison, R.G., 1992. Variation in mitochondrial DNA and the biogeographic history of woodrats (Neotoma) of the eastern United States. Systematic Biology 41: 331–44CrossRefGoogle Scholar
Hewitt, G.M. 1996. Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society 58: 247–76CrossRefGoogle Scholar
Hewitt, G.M. 2000. The genetic legacy of the Quarternary ice ages. Nature (London) 405: 907–13CrossRefGoogle Scholar
Lamb, T., Avise, J.C., Gibbons, J.W. 1989. Phylogeographic patterns in mitochondrial DNA of the desert tortoise (Xerobates agassizi) and evolutionary relationships among the North American gopher tortoises. Evolution 43: 7687Google ScholarPubMed
Lamb, T., Jones, T.R., Wettstein, P.J. 1997. Evolutionary genetics and phylogeography of tassel-eared squirrels (Sciurus abierti). Journal of Mammalogy 78: 117–33CrossRefGoogle Scholar
Masta, S. 2000. Phylogeography of the jumping spider Habronattus pugillis (Araneae: Salticidae): recent vicariance of sky island populations? Evolution 54: 1699–711Google ScholarPubMed
Matthews, J.V. Jr. 1979. Tertiary and quarternary environments: historical background for an analysis of the Canadian insect fauna. pp. 730In Danks, H.V. (Ed), Canada and its insect fauna. Memoirs of the Entomological Society of Canada 108Google Scholar
Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–90CrossRefGoogle ScholarPubMed
Packer, L., Owen, R.E. 1989. Isozyme variation in Halictus rubicundus: a primitively eusocial bee (Hymenoptera: Halictidae). The Canadian Entomologist 121: 1049–58CrossRefGoogle Scholar
Packer, L., Owen, R.E. 1990. Allozyme variation, linkage disequilibrium and diploid male production in a primitively social bee Augochlorella striata (Hymenoptera: Halictidae). Heredity 65: 241–8CrossRefGoogle Scholar
Packer, L., Owen, R.E. 1992. Variable enzyme systems in the Hymenoptera. Biochemical Systematics and Ecology 20: 17.CrossRefGoogle Scholar
Packer, L., Owen, R.E. 2001. Population genetic aspects of pollinator decline. Conservation Ecology 5(1): 4. Available from http://www.consecol.org/vol5/issl/art4 (accessed on 5 April 2001)CrossRefGoogle Scholar
Packer, L., Taylor, J.S. 1997. How many cryptic species are there? An application of the phylogenetic species concept to genetic data for some comparatively well known bee species. The Canadian Entomologist 129: 587–94CrossRefGoogle Scholar
Packer, L., Porsa, A., Plateaux-Quénu, C., Plateaux, L. 1999. A cryptic species allied to Evylaeus villosulus (Kirby) (Hymenoptera: Halictidae). Annales de la Societe Entomologique de France 35: 165–71Google Scholar
Parmesan, C. 1996. Climate and species' range. Nature (London) 382: 765–6CrossRefGoogle Scholar
Peterson, M.A., Denno, R.E. 1998. The influence of dispersal and diet breadth on patterns of genetic isolation by distance in phyophagous insects. American Naturalist 152: 428–46CrossRefGoogle ScholarPubMed
Péwé, T.L. 1983. The periglacial environment in North America during Wisconsin time. pp 157–89 In Wright, H.E. Jr. (Ed), Late-quarternary environments of the United States. Minneapolis: University of Minnesota PressGoogle Scholar
Pielou, E.C. 1991. After the ice age: the return of life to glaciated North America. Chicago: University of Chicago PressCrossRefGoogle Scholar
Riddle, B.R., Honeycutt, R.L. 1990. Historical biogeography in North American arid regions: an approach using mitochondrial-DNA phylogeny in grasshopper mice (genus Ochomys). Evolution 44: 114Google Scholar
Rosenmeier, L.. Packer, L. 1993. A comparison of genetic variation in two sibling species pairs of haplodiploid insects. Biochemical Genetics 31: 185200CrossRefGoogle ScholarPubMed
Routman, E., Wu, R., Templeton, A.R. 1994. Parsimony, molecular evolution and biogeography: the case of the North American giant salamander. Evolution 48: 1799–809CrossRefGoogle ScholarPubMed
Sakagami, S.F., Toda, M.J. 1986. Some arctic and subarctic solitary bees collected at Inuvik and Tuktoyaktuk, NWT, Canada (Hymenoptera: Apoidea). The Canadian Entomologist 118: 395405CrossRefGoogle Scholar
Slatkin, M. 1993. Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47: 264–79CrossRefGoogle ScholarPubMed
Sokal, R.R., Rohlf, F.J. 1995. Biometry. 3rd edition. New York: WH Freeman and CoGoogle Scholar
Sokal, R.R., Sneath, P.H.A. 1973. Numerical taxonomy. New York: WH Freeman and CoGoogle Scholar
Svensson, B.G., Ebmer, P.A.W., Sakagami, S.F. 1977. Lasioglossum (Evylaeus) boreale, a new Halictinae (Hymenoptera: Apoidea) species found in northern Sweden and on Hokkaido, Japan, with notes on its biology. Entomologica Scandinavica 8: 219–29Google Scholar
Swofford, D.L., Selander, R.B. 1989. BIOSYS-1: a computer program for the analysis of allelic variation in population genetics and biochemical systematics. Release 1.7. Champaign: Illinois Natural History SurveyGoogle Scholar
Weir, B.S., Cockerham, C.C. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–70Google ScholarPubMed
Wheeler, Q.D., Meier, R. (Editors). 2000. Species concepts and phylogenetic theory. New York: Columbia University PressGoogle Scholar
Whitlock, M.C., McCauley, D.E. 1999. Indirect measures of gene flow and migration: F ST≠1/(4N m + 1). Heredity 82: 117–25CrossRefGoogle Scholar
Yokoyama, Y., Lambeck, K., De Deckker, P., Johnston, P., Fields, L.K. 2000. Timing of the last glacial maxima from observed sea-level minima. Nature (London) 406: 713–6CrossRefGoogle Scholar
Zink, R.M., Dittmann, D.L. 1993. Gene flow, refugia, and evolution of geographic variation in the song sparrow (Melospiza melodia). Evolution 47: 717–29Google ScholarPubMed