Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-30T23:26:41.156Z Has data issue: false hasContentIssue false

GENETIC CONTROL OF INSECT POPULATIONS: ISOLATION AND FITNESS DETERMINATION OF AUTOSOMAL TRANSLOCATIONS

Published online by Cambridge University Press:  31 May 2012

J. A. Keith Reid
Affiliation:
Department of Environmental Biology, University of Guelph, Guelph, Ontario
C. F. Wehrhahn
Affiliation:
Institute of Animal Resource Ecology and Department of Zoology, University of British Columbia, Vancouver, British Columbia

Abstract

Recent advances in genetic insect control theory have made it important to investigate the fitness effects of, and isolation procedures for, autosomal translocations. We isolated 57 autosomal translocations in Drosophila melanogaster (Dipt., Dros.). Twenty-one were homozygous-viable and a few of these were almost as viable as wild-types. From data obtained during the isolation of these translocations it appears that those translocations whose heterozygotes produce high levels of unbalanced gametes have the same range of homozygous viabilities as others. We may infer, therefore, that it is possible to use our simple marker-free isolation method to isolate translocations with sufficiently low heterozygote and sufficiently high homozygote fitness to make population replacement practicable.

This is confirmed in population cage competition experiments. It appears that between 5 and 10% of induced marker-free translocations may be useful for population replacement.

Résumé

Des découvertes récentes, reliées à la théorie du contrôle génétique des insectes, ont souligné l’importance des études sur (1) les effets des translocations autosomiques sur la vitalité des organismes et (2) les techniques d’isolement de ces translocations. Nous avons isolé 57 translocations autosomiques induites chez Drosophila melanogaster. Vingt et une de ces translocations étaient homozygotes viables et certaines étaient aussi viables que le type sauvage. A partir des résultats obtenus au cours de l’isolement de ces translocations, il paraît que les translocations dont les hétérozygotes produisent des nombres élevés de gamètes anormaux démontrent autant de viabilité homozygote que les autres. Nous pouvons par conséquent déduire qu’il est possible d’utiliser notre méthode pour isoler des translocations ayant une proportion suffisamment basse de vitalité hétérozygote et suffisamment élevée de vitalité homozygote pour que le remplacement de la population soit praticable.

Ceci se confirme par des expériences sur la compétition de populations en cages. Il apparaît qu’entre 5 et 10% des translocations induites et non marquées pourraient servir au remplacement de population.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fitz-Earle, M. 1976. Insect population control using genetic engineering. Bull. ent. Soc. Am. 22: 1114.Google Scholar
Fitz-Earle, M., Holm, D.G., and Suzuki, D.T., 1974. Genetic control of insect populations. Genetics 74: 461475.CrossRefGoogle Scholar
Foster, G.G., Whitten, M.J., Prout, T., and Gill, R.. 1972. Chromosome rearrangements for the control of insect pests. Science 176: 875886.CrossRefGoogle ScholarPubMed
Smith, R.H. and von Borstel, R.C.. 1972. Genetic control of insect populations. Science 178: 11641174.CrossRefGoogle ScholarPubMed
Robinson, A.S. and Curtis, C.F.. 1973. Controlled crosses and cage experiments with a translocation in Drosophila. Genetica 44: 591602.CrossRefGoogle Scholar
Wagoner, D.E., Morgan, P.B., LaBreque, G.C., and Johnson, O.A.. 1973. Genetic manipulation used against a field population of houseflies. I. Males bearing a heterozygous translocation. Environ. Ent. 2: 128134.CrossRefGoogle Scholar
Wehrhahn, C.F. and Klassen, W.. 1971. Genetic insect control methods involving the release of relatively few laboratory-reared insects. Can. Ent. 103: 13871396.CrossRefGoogle Scholar
Whitten, M.S. 1971 Insect control by genetic manipulation of natural populations. Science 171: 682684.CrossRefGoogle ScholarPubMed
Whitten, M.S. 1971 b. Use of chromosome rearrangements for mosquito control. In Sterility principle for insect control or eradication, pp. 399413. IAEA.Google Scholar
Wijnands-Stab, K.J.A. and van Heemert, C.. 1974. Radiation induced semi-sterility for genetic control purposes in the onion fly Hylemya antiqua (Meigen). Genetics theor. appl. 44: 111119.CrossRefGoogle Scholar