Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T17:24:56.485Z Has data issue: false hasContentIssue false

Gall-maker Paradiplosis tumifex (Diptera: Cecidomyiidae) and its inquiline Dasineura balsamicola (Diptera: Cecidomyiidae): an update on epidemic episodes and seasonal ecology in Québec, Canada

Published online by Cambridge University Press:  25 January 2016

Jean-Frédéric Guay
Affiliation:
Département de biologie, Université Laval, Ville de Québec, Québec, G1V 0A6, Canada
Diane Bulot
Affiliation:
Département de biologie, Université Laval, Ville de Québec, Québec, G1V 0A6, Canada
Jean-Michel Béland
Affiliation:
Département de biologie, Université Laval, Ville de Québec, Québec, G1V 0A6, Canada
Conrad Cloutier*
Affiliation:
Département de biologie, Université Laval, Ville de Québec, Québec, G1V 0A6, Canada
*
1 Corresponding author (e-mail: [email protected]).

Abstract

The balsam gall midge Paradiplosis tumifex Gagné (Diptera: Cecidomyiidae) is a major pest for the Christmas tree industry. This galler is frequently associated with the inquiline Dasineura balsamicola (Lintner) (Diptera: Cecidomyiidae), which is involved in the dynamics of the galler. Despite their importance, seasonal ecology of both midges under the climatic conditions prevailing in eastern Canada is still poorly understood. More importantly, nothing has yet been done to fully assess the impact of temperature on these insects, at key events such as adult emergence and larval overwintering. Here we followed P. tumifex and D. balsamicola spring phenology in the field, as well as their survival during winter diapause under simulated climatic scenarios in the laboratory. We observed spring asynchrony between fir host trees and P. tumifex in the first year of study, but under prevailing epidemic conditions, we observed no impact on summer abundance. We clarified available knowledge on their ecology, showing that overwintering habitats and strategies differ between the galler and its inquiline, which should alter pest control strategies. Experimental overwintering data suggest that diapausing conditions affect these species differentially and could potentially impact the spring sex ratio of their midges, which tends to be strongly female biased.

Résumé

La cécidomyie du sapin Paradiplosis tumifex Gagné (Diptera: Cecidomyiidae) est un ravageur galligène important en plantations d’arbres de Noël. Elle est fréquemment associée à l’inquiline des galles Dasineura balsamicola (Lintner) (Diptera: Cecidomyiidae), liée au déclin des populations de la galligène. Malgré leur importance, leur écologie saisonnière sous les conditions climatiques prévalant dans l’est du Canada demeure peu étudiée. De plus, rien n’a encore été fait pour évaluer l’impact de la température sur ces insectes, lors d’évènements clés du cycle vital comme l’émergence des adultes, ou durant l’hivernement des larves. Nous avons étudié ici la phénologie printanière de P. tumifex et de D. balsamicola sur le terrain pendant deux saisons, ainsi que leur survie hivernale en conditions simulées en laboratoire. L’asynchronie printanière entre le débourrement de l’arbre hôte et l’émergence de P. tumifex en première année n’a pas eu d’effet négatif apparent sur les populations estivales. Nous avons montré que l’emplacement et les conditions d’hivernement de ces deux espèces diffèrent, ce qui devrait affecter les stratégies de lutte phytosanitaire. Nos résultats expérimentaux suggèrent que les conditions de diapause affectent différemment les deux espèces, et peuvent affecter le sex-ratio des moucherons au printemps, qui est fortement biaisé vers les femelles.

Type
Behaviour & Ecology
Copyright
© Entomological Society of Canada 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Deepa Pureswaran

References

Akar, H. and Osgood, E.A. 1987. The method by which larvae of Dasineura balsamicola (Lintner) (Diptera: Cecidomyiidae) gain access to the interior of galls induced by Paradiplosis tumifex Gagné (Diptera: Cecidomyiidae). The Canadian Entomologist, 119: 395396.Google Scholar
Bale, J.S. and Hayward, S.A.L. 2010. Insect overwintering in a changing climate. The Journal of Experimental Biology, 213: 980994.CrossRefGoogle Scholar
Behura, S.K., Sahu, S.C., Mohan, M., and Nair, S. 2001. Wolbachia in the Asian rice gall midge, Orseolia oryzae (Wood-Mason): correlation between host mitotypes and infection status. Insect Molecular Biology, 10: 163171.Google Scholar
Berg, M.P., Kiers, E.T., Driessen, G., van der Heijden, M., Kooi, B.W., Kuenen, F., et al. 2010. Adapt or disperse: understanding species persistence in a changing world. Global Change Biology, 16: 587598.Google Scholar
Cloutier, C., Mailhot, P., and Brodeur, J. 2006. La cécidomyie du sapin a-t-elle trop d’ennemis naturels? Le Naturaliste Canadien, 130: 3236.Google Scholar
Giese, R.L. and Benjamin, D.M. 1959. The biology and ecology of the balsam gall midge in Wisconsin. Forest Science, 5: 193208.Google Scholar
Goodrich, L.E. 1982. The influence of snow cover on the ground thermal regime. Canadian Geotechnical Journal, 19: 421432.Google Scholar
Hanski, I. 1987. Pine sawfly population dynamics: patterns, processes, problems. Oikos, 50: 327335.Google Scholar
Intergovernmental Panel on Climate Change. 2013. Climate change 2013: the physical science basis. Working group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom.Google Scholar
Klapwijk, M.J., Ayres, M.P., Battisti, A., and Larsson, S. 2012. Assessing the impact of climate change on outbreak potential. In Insect outbreaks revisited. Edited by P. Barbosa, D.K. Letourneau, and A.A. Agrawal. Blackwell Publishing, Hoboken, New Jersey, United States of America. Pp. 431450.Google Scholar
Lintner, J.A. 1888. Fourth report on the injurious and other insects of New York. The Troy Press Company, Albany, New York, United States of America.Google Scholar
MacGown, M.W. 1979. Two new species of chalcidoid wasps (Hymenoptera) parasitic on the balsam gall midge (Diptera: Cecidomyiidae) in Maine. The Canadian Entomologist, 111: 939943.CrossRefGoogle Scholar
Mailhot, P. 2006. Écologie de la cécidomyie du sapin (Paradiplosis tumifex): relations avec la cécidomyie inquiline des galles (Dasineura balsamicola) et ses parasitoïdes. M.Sc. thesis. Université Laval, Ville de Québec, Québec, Canada. Available from http://www.theses.ulaval.ca/2006/23941/23941.pdf [accessed 10 October 2015].Google Scholar
Osawa, A., Shoemaker, C.A., and Stedinger, J.R. 1983. A stochastic model of balsam fir bud phenology utilizing maximum likelihood parameter estimation. Forest Science, 29: 478490.Google Scholar
Osgood, E.A., Bradbury, R.L., and Drummond, F.A. 1992. The balsam gall midge – an economic pest of balsam fir Christmas trees. Maine Agricultural Experiment Station Technical Bulletin, 151: 130.Google Scholar
Osgood, E.A. and Gagné, R.J. 1978. Biology and taxonomy of two gall midges (Diptera: Cecidomyiidae) found in galls on balsam fir needles with description of a new species of Paradiplosis . Annals of the Entomological Society of America, 71: 8591.Google Scholar
Ozaki, K. 1998. Inter-specific difference in budburst time and its adelid Adelges japonicus (Monzen) (Hom., Adelgidae). Journal of Applied Entomology, 122: 483486.Google Scholar
Powell, G.R. 1982. Shoot and bud development in balsam fir: implications for pruning of Christmas trees. The Forestry Chronicle, 58: 168172.Google Scholar
Robinet, C. and Roques, A. 2010. Direct impacts of recent climate warming on insect populations. Integrative Zoology, 5: 132142.Google Scholar
Singer, M.C. and Parmesan, C. 2010. Phenological asynchrony between herbivorous insects and their hosts: signal of climate change or pre-existing adaptive strategy? Philosophical Transactions of the Royal Society B: Biological Sciences, 365: 31613176.Google Scholar
Smith, M. and Lamb, R.J. 2004. Causes of variation in body size and consequences for the life history of Sitodiplosis mosellana . The Canadian Entomologist, 136: 839850.CrossRefGoogle Scholar
Tabadkani, S.M., Ashouri, A., and Qolizadeh, M. 2012. An equal sex ratio followed by differential sex mortality causes overestimation of females in gall midges: no evidence for sex ratio regulation. Naturwissenschaften, 99: 493499.Google Scholar
Tabadkani, S.M., Khansefid, M., and Ashouri, A. 2011. Monogeny, a neglected mechanism of inbreeding avoidance in small populations of gall midges. Entomologia Experimentalis et Applicata, 140: 7784.Google Scholar
West, R.J. and Shorthouse, J.D. 1982. Morphology of the balsam fir needle gall induced by the midge Paradiplosis tumifex (Diptera: Cecidomyiidae). Canadian Journal of Botany, 60: 131140.Google Scholar
Yukawa, J. 2000. Synchronization of gallers with host plant phenology. Population Ecology, 42: 105113.Google Scholar