Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T05:20:35.980Z Has data issue: false hasContentIssue false

GALLERY CONSTRUCTION AND OVIPOSITION BY IPS CALLIGRAPHUS (COLEOPTERA: SCOLYTIDAE) IN RELATION TO SLASH PINE PHLOEM THICKNESS AND TEMPERATURE1

Published online by Cambridge University Press:  31 May 2012

Robert A. Haack
Affiliation:
Department of Entomology and Nematology, University of Florida, Gainesville, Florida 32611
Robert C. Wilkinson
Affiliation:
Department of Entomology and Nematology, University of Florida, Gainesville, Florida 32611
John L. Foltz
Affiliation:
Department of Entomology and Nematology, University of Florida, Gainesville, Florida 32611
Jeffrey A. Corneil
Affiliation:
Department of Entomology and Nematology, University of Florida, Gainesville, Florida 32611

Abstract

Reproductive performance of Ips calligraphus (Germar) in typical slash pine, Pinus elliottii Engelm. var. elliottii, bark slabs with phloem thicknesses ranging from 0.5 to 4.0 mm was studied at 20°, 25°, and 30 °C during the fall (1981) and summer (1982) seasons by means of radiography and slab dissection. Oviposition rate (eggs/day) and egg density (eggs/cm) were positively correlated with both phloem thickness and temperature, being greatest with a combination of thick phloem (3–4 mm) and warm temperature (30 °C). Gallery construction rate (cm/day) was positively correlated, and length of initial egg-free gallery was negatively correlated, with temperature. Depth of xylem-etching was negatively correlated with phloem thickness. Reproductive performance, as measured by oviposition rate and egg density, was greater in the summer study than in the fall study under similar conditions of phloem thickness and temperature. Nutritional, physical, and seasonal characteristics of xylem, phloem, and outer bark are discussed in relation to the above findings.

Résumé

La performance reproductive de l'Ips calligraphus (Germar) dans des pièces d'écorce du pin Pinus elliottii Engelm. var. elliottii dont l'épaisseur du phloème variait de 0.5 à 4.0 mm a été étudiée à 20°, 25 °et 30 °C durant l'automne 1981 et à l'été 1982 à l'aide de la radiographie et de la dissection des pièces. La fréquence de ponte (oeufs/jour) et la densité des oeufs (oeufs/cm) étaient positivement corrélées avec l'épaisseur du phloème et la température, les valeurs maximales étant obtenues à 30 °C dans du phloème de bonne épaisseur (3–4 mm). La vitesse de forage des galeries (cm/jour) était corrélée positivement, alors que la longueur de la galerie initiale sans oeufs l'était négativement, à la température. La profondeur des marques gravées dans le xylème était négativement corrélée avec l'épaisseur du phloème. La performance reproductive, mesurée par la fréquence de ponte et la densité d'oeufs, était plus élevée en été qu'en automne à pareille température et dans une même épaisseur de phloème. Les caractéristiques nutritionnelles, physiques et saisonnières du xylème, du phloème et de l'écorce externe sont mises en relation avec ces observations.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amman, G. D. 1972. Some factors affecting oviposition behavior of the mountain pine beetle. Environ. Ent. 1: 691695.CrossRefGoogle Scholar
Amman, G. D. and Pace, V. E.. 1976. Optimum egg gallery densities for the mountain pine beetle in relation to lodgepole pine phloem thickness. U.S. Dep. Agric. Forest Serv. Res. Note INT-209.Google Scholar
Chellman, C. W. 1980. Tree mortality (pest) surveys in Florida from 1959 thru 1979. Forest Pest Management Symposium, Florida Section Soc. Am. For., 3-4 June 1980. Gainesville, FL. School Forest Res. Conserv. Res. Rep. 7. pp. 812.Google Scholar
Dohrenwend, R. E. 1978. The climate of Alachua County, Florida. Fla agric. Exp. Stn Bull. 796.Google Scholar
Gouger, R. J., Yearian, W. C., and Wilkinson, R. C.. 1975. Feeding and reproductive behavior of Ips avulsus. Fla Ent. 58: 221229.Google Scholar
Hopping, G. R. 1963. The natural groups of species in the genus Ips DeGeer (Coleoptera: Scolytidae) in North America. Can. Ent. 95: 508516.CrossRefGoogle Scholar
Howard, E. T. 1971. Bark structure of the southern pines. Wood Sci. 3: 134148.Google Scholar
Ifju, G. 1969. Within-growth-ring variation in some physical properties of southern pine wood. Wood Sci. 2: 1119.Google Scholar
Koch, P. 1972. Utilization of the southern pines, Vol. I. U.S. Dep. Agric. Agric. Handbk 420.Google Scholar
Kramer, P. J. and Kozlowski, T. T.. 1979. Physiology of Woody Plants. Academic Press, N.Y.811 pp.Google Scholar
Martin, R. E. 1969. Characterization of southern pine barks. For. Prod. J. 19(8): 2330.Google Scholar
Miller, S. R. Jr., 1959. Variation in inherent wood characteristics in slash pine. Fifth South. Conf. on Forest Tree Improv. Proc. 1959, pp. 97106.Google Scholar
Paul, B. H. 1939. Variation in the specific gravity of the springwood and summerwood of four species of southern pines. J. For. 37: 478482.Google Scholar
Reid, R. W. 1958. Internal changes in the female mountain pine beetle, Dendroctonus monticolae Hopk., associated with egg laying and flight. Can. Ent. 90: 464468.CrossRefGoogle Scholar
Sahota, T. S. and Thomson, A. J.. 1979. Temperature induced variation in the rates of reproductive processes in Dendroctonus rufipennis (Coleoptera: Scolytidae): a new approach to detecting changes in population quality. Can. Ent. 111: 10691078.CrossRefGoogle Scholar
Schmitz, R. F. 1972. Behavior of Ips pini during mating, oviposition, and larval development (Coleoptera: Scolytidae). Can. Ent. 104: 17231728.CrossRefGoogle Scholar
Scriber, J. M. and Slansky, F. Jr., 1981. The nutritional ecology of immature insects. A. Rev. Ent. 26: 183211.Google Scholar
Stark, R. W. 1982. Generalized ecology and life cycles of bark beetles. pp. 21–45 in Mitton, J. B. and Sturgeon, K. B. (Eds.), Bark Beetles in North American Conifers. Univ. of Texas Press, Austin. 527 pp.Google Scholar
Steel, R. G. D. and Torrie, J. H.. 1980. Principles and Procedures of Statistics. 2nd ed. McGraw-Hill, N.Y.633 pp.Google Scholar
Wagner, T. L., Feldman, R. M., Gagne, J. A., Cover, J. D., Coulson, R. N., and Schoolfield, R. M.. 1981. Factors affecting gallery construction, oviposition, and reemergence of Dendroctonus frontalis in the laboratory. Ann. ent. Soc. Am. 74: 255273.CrossRefGoogle Scholar
Wilkinson, R. C. 1964. Attraction and development of Ips bark beetle populations in artificially infested pine bolts exposed on firetowers and turntables in Florida. Fla Ent. 47: 5764.CrossRefGoogle Scholar
Wilkinson, R. C. and Foltz, J. L.. 1980. A selected bibliography (1959–1979) of three southeastern species of Ips engraver beetles. Bull. ent. Soc. Am. 26: 375380.Google Scholar
Wilkinson, R. C., McClelland, W. T., Murillo, R. M., and Ostmark, H. E.. 1967. Stridulation and behavior in two southeastern Ips bark beetles (Coleoptera: Scolytidae). Fla Ent. 50: 185195.Google Scholar
Wood, S. L. 1982. The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Nat. Mem. 6. 1359 pp.Google Scholar