Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T19:07:37.087Z Has data issue: false hasContentIssue false

FURTHER DIFFICULTIES IN THE ANALYSIS OF FUNCTIONAL-RESPONSE EXPERIMENTS AND A RESOLUTION

Published online by Cambridge University Press:  31 May 2012

F.M. Williams
Affiliation:
Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
Steven A. Juliano
Affiliation:
Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802

Abstract

The Holling disc equation (Type-II functional response) for predation, which is mathematically equivalent to the Michaelis–Menten enzyme-kinetics and to the Monod microbial-growth equations, has been used in several linear transformations for parameter estimation. The most commonly used is the Lineweaver–Burk double reciprocal. We compare 4 linearizations of the disc equation and a direct nonlinear fit to stimulated predation data. We conclude that (1) the best parameter estimates are obtained by the direct nonlinear method and (2) the Lineweaver–Burk is the worst of the (all unsatisfactory) linearizations. We propose a new nonparametric technique to use when nonlinear methods cannot be used.

Résumé

L'équation “disc” de Holling (réponse fonctionnelle de type II) pour la prédation laquelle équivaut mathématiquement aux équations de Michaelis–Menten pour la cinétique des enzymes, et de Monod pour la croissance mirobienne, est ordinairement soumise à diverses transformations linéaires pour l'estimation des paramètres. La plus communément utilisée est la réciproque double de Lineweaver–Burk. On compare ici 4 formes linéarisées de l'équation de Holling avec un ajustement non linéaire direct à des données de prédation simulées. On conclut que (1) les meilleurs estimés des paramètres sont obtenus avec la méthode non linéaire directe, et (2) la linéarisation de Lineweaver–Burk est la pire méthode (toutes étant insatisfaisantes). On propose une nouvelle technique non-paramétrique lorsque les méthodes non linéaires ne peuvent être utilisées.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atkins, G.L. and Nimmo, J.A. 1975. A comparison of seven methods for fitting the Michaelis-Menten equation. Biochem. J. 149: 775777.CrossRefGoogle ScholarPubMed
Bard, Y. 1974. Non-linear Parameter Estimation. Academic Press, NY.Google Scholar
BMDP Statistical Software. 1981. University of California Press, Berkeley, CA.Google Scholar
Colquhoun, D. 1971. Lectures on Biostatistics. Clarendon Press, Oxford.Google Scholar
Cornish-Bowden, A. and Eisenthal, R.. 1974. Statistical considerations in the estimation of enzyme kinetic parameters by direct linear plot and other methods. Biochem. J. 139: 721730.CrossRefGoogle Scholar
Currie, D.J. 1982. Estimating Michaelis–Menten parameters: Bias, variance, and experimental design. Biometrics 38: 907919.CrossRefGoogle Scholar
Dowd, J.E. and Riggs, D.S. 1965. A comparison of estimates of Michaelis-Menten kinetic constants from various transformations. J. Biol. Chem. 240: 863869.CrossRefGoogle Scholar
Dowell, R.V. 1979. Effect of low host density on oviposition by larval parasitoids of the alfalfa weevil. J.N.Y. Ent. Soc. 87: 914.Google Scholar
Eisenthal, R. and Cornish-Bowden, A.. 1974. The direct linear plot. Biochem. J. 139: 715720.CrossRefGoogle ScholarPubMed
Everson, P. 1979. The functional response of Phytosilus persimilis (Acarina: Phytoseiidae) to various densities of Tetranychus urticae (Acarina: Tetranychidae). Can. Ent. 111: 710.CrossRefGoogle Scholar
Glass, N.R. 1970. A comparison of two models of the functional response with emphasis on parameter estimation procedures. Can. Ent. 102: 10941101.CrossRefGoogle Scholar
Hassell, M.P. 1978. The Dynamics of Arthropod Predator–Prey Systems. Princeton Univ. Press, Princeton, NJ.Google ScholarPubMed
Hassell, M.P. and Waage, J.K. 1984. Host parasitoid population interactions. A. Rev. Ent. 29: 89114.Google Scholar
Hollander, M. and Wolfe, D.A. 1973. Non-parametric Statistical Methods. Wiley, NY.Google Scholar
Holling, C.S. 1959. Some characteristics of simple types of predation and parasitism. Can. Ent. 91: 385398.CrossRefGoogle Scholar
Holling, C.S. 1966. The functional response of invertebrate predators to prey density. Mem. ent. Soc. Canada 48: 186.Google Scholar
Houck, M.A. and Strauss, R.E.. 1985. The comparative study of functional responses: Experimental design and statistical interpretation. Can. Ent. 117: 000–000.CrossRefGoogle Scholar
Juliano, S.A. and Williams, F.M.. 1985. On the evolution of handling time. Evolution 39: 212215.CrossRefGoogle ScholarPubMed
Livdahl, T.P. 1979. Evolution of handling time: The functional response of a predator to the density of sympatric and allopatric strains of prey. Evolution 33: 765768.CrossRefGoogle Scholar
Livdahl, T.P. and Stiven, A.E. 1983. Statistical difficulties in the analysis of predator functional response data. Can. Ent. 115: 13651370.CrossRefGoogle Scholar
Matsumoto, B.M. and Huffaker, C.B. 1973. Regulatory processes and population cyclicity in laboratory populations of Anagasta kühniella (Zeller) (Lepidoptera: Phyctidae). V. Hostfinding and parasitization in a “small” universe by an entomophagous parasite, Venturia canescens (Gravenhorst) (Hymenoptera: Ichneumonidae). Researches Popul. Ecol. Kyoto Univ. 15: 3249.Google Scholar
McArdle, B.H. and Lawton, J.H. 1979. Effects of prey-size and predator instar on the predation of Daphnia by Notonecta. Ecol. Ent. 4: 267275.CrossRefGoogle Scholar
Neter, J. and Wasserman, W.. 1974. Applied Linear Models. Richard D. Irwin, Inc. Homewood, IL.Google Scholar
Porter, W.R. and Trager, W.F. 1977. Improved non-parametric statistical methods for the estimation of Michaelis–Menten kinetic parameters by the direct linear plot. Biochem. J. 161: 293302.CrossRefGoogle ScholarPubMed
Rogers, D. 1972. Random search and insect population models. J. Anim. Ecol. 41: 369383.CrossRefGoogle Scholar
Royama, T. 1971. A comparative study of models for predation and parasitism. Researches Popul. Ecol. Kyoto Univ. Suppl. 1. 99 pp.Google Scholar
Russo, R.J. 1983. The functional response of Toxorhynchites rutilus rutilus (Diptera: Culicidae) a predator on container breeding mosquitoes. J. med. Ent. 20: 585590.CrossRefGoogle Scholar
SAS Institute Inc. 1982 a. SAS User's Guide: Basics, 1982 ed. Cary, NC.Google Scholar
SAS Institute Inc. 1982 b. SAS User's Guide: Statistics, 1982 ed. Cary, NC.Google Scholar
Southwood, T.R.E. 1978. Ecological methods with particular reference to the study of insect populations, 2nd ed. Chapman and Hall, London.Google Scholar
Thornley, J.H.M. 1976. Mathematical Models in Plant Physiology. Academic Press, London, New York, and San Francisco. 318 pp.Google Scholar
Tilman, D. 1982. Resource competition and community structure. Princeton University Press, Princeton. NJ.Google ScholarPubMed
Williams, F.M. 1972. Mathematics of microbial populations with emphasis on open systems. pp. 397–426 in Deevey, E.S. (Ed.), Growth by Intussusception – Ecological Essays in Honor of G. Evelyn Hutchinson. Archon Books, Hamden, CT.Google Scholar
Williams, F.M. 1980. On understanding predator–prey interactions. pp. 349376in Ellwood, D.C, Hedger, J.N, Latham, M.J, Lynch, J.M, and Slater, J.H (Eds.), Contemporary Microbial Ecology. Academic Press, London.Google Scholar