Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T10:51:00.475Z Has data issue: false hasContentIssue false

Fungal symbiont of firebrats (Thysanura) induces arrestment behaviour of firebrats and giant silverfish but not common silverfish

Published online by Cambridge University Press:  25 July 2013

Nathan Woodbury
Affiliation:
Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
Gerhard Gries*
Affiliation:
Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
*
1Corresponding author (e-mail: [email protected]).

Abstract

We have recently shown that firebrats, Thermobia domestica (Packard) (Thysanura: Lepismatidae), carry, and deposit with their faeces, the symbiotic bacterium Enterobacter cloacae (Jordan 1890) Hormaeche and Edwards 1960 (Enterobacteriaceae) and the symbiotic fungus Mycotypha microspora Fenner, 1932 (Mycotyphaceae), and that these microbes induce arrestment behaviour and aggregation of firebrats. Here, we tested whether giant silverfish, Ctenolepisma longicaudata Escherich (Thysanura: Lepismatidae), and common silverfish, Lepisma saccharina (Linnaeus) (Thysanura: Lepismatidae), also arrest in response to these two microbes. In dual-choice bioassays, E. cloacae arrested firebrats but not giant silverfish or common silverfish, whereas M. microspora arrested firebrats and giant silverfish but not common silverfish. As close relatives, firebrats and giant silverfish have similar microclimate and nutrient requirements and may use M. microspora as the same aggregation cue when they aggregate in hot and humid microclimates where M. microspora proliferates and breaks down cellulose. As a more distant relative to firebrats and giant silverfish, common silverfish seem to require a different as yet unknown aggregation cue or signal, possibly one that is indicative of the type of microclimate (room temperature; high humidity) they prefer.

Résumé

Nous avons démontré récemment que les thermobies, Thermobia domestica (Packard) (Thysanura: Lepismatidae), portent et déposent dans leurs fèces la bactérie symbiotique Enterobacter cloacae (Jordan 1890) Hormaeche et Edwards 1960 (Enterobacteriaceae) et le champignon symbiotique Mycotypha microspora Fenner 1932 (Mycotyphaceae) et que ces microorganismes provoquent un comportement d'arrêt sur place et d'attroupement chez les thermobies. Nous vérifions maintenant si le poisson d'argent géant, Ctenolepisma longicaudata Escherich (Thysanura: Lepismatidae), et le poisson d'argent commun, Lepisma saccharina (Linnaeus) (Thysanura: Lepismatidae), s'arrêtent aussi en présence de ces deux microorganismes. Dans des essais à deux choix, E. cloacae provoque l'arrêt sur place des thermobies, mais non des poissons d'argent géants ni des poissons d'argent communs, alors que M. microspora provoque l'arrêt des thermobies et des poissons d'argent géants, mais non des poissons d'argent communs. Les thermobies et les poissons d'argent géants, qui sont proches parents, possèdent des besoins semblables en microclimat et en nourriture et peuvent ainsi utiliser M. microspora comme signal commun lorsqu'ils se rassemblent dans les microclimats chauds et humides dans lesquels M. microspora prolifère et décompose de la cellulose. Étant des parents plus éloignés des thermobies et des poissons d'argent géants, les poissons d'argent communs semblent nécessiter un signal ou indicateur de rassemblement différent et encore non identifié, possiblement un qui indique le type de microclimat qu'ils préfèrent (température de la pièce, humidité élevée).

Type
Behaviour & Ecology – NOTE
Copyright
Copyright © Entomological Society of Canada 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bright, M., Bulgheresi, S.A. 2010. Complex journey: transmission of microbial symbionts. Nature Reviews Microbiology, 8: 218230.CrossRefGoogle ScholarPubMed
Brummel, T., Ching, A., Seroude, L., Simon, A.F., Benzer, S. 2004. Drosophila lifespan enhancement by exogenous bacteria. Proceedings of the National Academy of Sciences of the USA, 101: 1297412979.CrossRefGoogle ScholarPubMed
Dillon, R.J., Charnley, A.K. 2002. Mutualism between the desert locust Schistocerca gregaria and its gut microbiota. Research in Microbiology, 153: 503509.CrossRefGoogle ScholarPubMed
Dillon, R.J., Vennard, C.T., Charnley, A.K. 2000. Exploitation of gut bacteria in the locust. Nature, 403: 851.CrossRefGoogle ScholarPubMed
Dillon, R.J., Vennard, C.T., Charnley, A.K. 2002. A note: gut bacteria produce components of a locust cohesion pheromone. Journal of Applied Microbiology, 92: 759763.CrossRefGoogle ScholarPubMed
Emmens, R., Murray, M. 1983. Bacterial odors as oviposition stimulants for Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae), the Australian sheep blowfly. Bulletin of Entomological Research, 73: 411416.CrossRefGoogle Scholar
Fitt, G.P., O'Brien, R.W. 1985. Bacteria associated with four species of Dacus (Diptera: Tephritidae) and their role in the nutrition of the larvae. Oecologia, 67: 447454.CrossRefGoogle ScholarPubMed
Jang, E.B., Nishijima, K.A. 1990. Identification and attractancy of bacteria associated with Dacus dorsalis (Diptera: Tephritidae). Environmental Entomology, 19: 17261751.CrossRefGoogle Scholar
Lindsay, E. 1940. The biology of the silverfish, Ctenolepisma longicaudata Esch. with particular reference to its feeding habits. Proceedings of the Royal Society of Victoria, 52: 3583.Google Scholar
Mendes, L.F. 1991. On the phylogeny of the genera of Lepismatidae (Insecta: Zygentoma). In Advances in management and conservation of soil fauna . Edited by G.K. Veeresh, D. Rajagopal and C.A. Viraktamath. Oxford & IBH Publishing, New Delhi, India. Pp. 313.Google Scholar
Sweetman, H.L. 1938. Physical ecology of the firebrat, Thermobia domestica (Packard). Ecological Monographs, 8: 285311.CrossRefGoogle Scholar
Tremblay, M.N., Gries, G. 2003. Pheromone-based aggregation behaviour of the firebrat, Thermobia domestica (Packard) (Thysanura: Lepismatidae). Chemoecology, 13: 2126.CrossRefGoogle Scholar
Woodbury, N. 2012. Microorganisms that benefit insects: A guide to their transmission and experimentally-demonstrated benefit. Edited by K. Woodman. LAP Lambert Academic Publishing, Saarbrücken, Saarland, Germany. Pp. 1–168.Google Scholar
Woodbury, N., Gries, G. 2007. Pheromone-based arrestment behavior in the common silverfish, Lepisma saccharina, and giant silverfish, Ctenolepisma lognicaudata. Journal of Chemical Ecology, 33: 13511358.CrossRefGoogle Scholar
Woodbury, N., Gries, G. 2008. Amber-colored excreta: a source of arrestment pheromone in firebrats, Thermobia domestica. Entomologia Experimentalis et Applicata, 127: 100107.CrossRefGoogle Scholar
Woodbury, N., Gries, G. 2013. Firebrats, Thermobia domestica, aggregate in response to the microbes Enterobacter cloacae and Mycotypha microspora. Entomologia Experimentalis et Applicata, 147: 154159.CrossRefGoogle Scholar
Woodbury, N., Moore, M., Gries, G. 2013. Horizontal transmission of the microbial symbionts Enterobacter cloacae and Mycotypha microspora to their firebrat host. Entomologia Experimentalis et Applicata, 147: 160166.CrossRefGoogle Scholar